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Abstract

The usual time integration approach for solving steady viscous free surface flow problems has several
drawbacks. We propose instead an efficient iterative method, which relies on a different but equivalent
formulation of the free surface flow problem, involving a so-called quasi free-surface condition. Fur-
thermore, we present a method for analyzing the properties of wave solutions of the discrete equations.
Numerical results for flow over a bottom bump agree well with measurements and with the predictions
of the analysis.

1 Introduction

The numerical solution of flows which are partially bounded by a freely moving boundary is of great prac-
tical importance. Current methods for solving steady viscous free-surface flow problems typically display
two defects, viz., high computational costs due to persistent transient behavior and substantial numerical
damping of gravity wave solutions. In the present work we address both of these problems.

To reduce the computational effort of solving the steady free-surface flow problem, we propose an efficient
iterative solution method. Whereas dedicated techniques have been developed for the solution of steady free
surface potential flow [2, 4], methods for steady Navier-Stokes flow simply continue the usual time integration
process until a steady state is reached. In [5] several drawbacks of this process are discussed, such as slow
convergence to steady state. In particular, one can show that at subcritical Froude numbers, dispersion
causes asymptotic temporal behavior of the amplitude of transient waves in Rd of O(t−(d−1)/2). Hence,
if the objective is to reduce the amplitude of transient waves to the order of spatial discretization errors,
the efficiency of the time integration approach deteriorates rapidly with decreasing meshwidth. In practical
computations, thousands of time steps are usually required.

The iterative method we propose relies on a different but equivalent formulation of the free-surface flow
problem, involving a quasi free-surface condition. The method solves a sequence of steady Navier-Stokes
subproblems with this condition imposed at an approximation to the steady free boundary. Each subproblem
evaluation yields an improved approximation to the steady free surface position. For the testcase presented,
the method displays linear convergence of the boundary location and the results exhibit good agreement
with measurements.

To reduce numerical wave damping, a priori knowledge of the properties of the discretization scheme is
imperative. We present a method for analyzing the properties of the discretized equations corresponding
to the subproblems. The analysis yields valuable information on numerical wave damping and dispersion
and can serve in the assessment of discretization schemes. The results of the analysis agree well with the
computed results.

2 Problem Statement & Solution Method

We consider an incompressible, viscous fluid flow, subject to a constant gravitational force on a domain, V.
The domain is bounded by a free boundary, S, and fixed boundaries ∂V \ S. The flow is characterized by
the Froude number, Fr, and the Reynolds number, Re. The (nondimensionalized) fluid velocity and pressure
are identified by v(x) and p(x), respectively. The objective is to find V,v(x), p(x) such that the steady
(Reynolds Averaged) Navier-Stokes equations are satisfied on V, the appropriate boundary conditions hold
at fixed boundaries and, moreover, at the free surface the steady kinematic condition,

v ·n = 0, x ∈ S, (1)
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with n(x) the unit normal vector to S, and the dynamic conditions,

tα ·τ (v) ·n = 0, x ∈ S, (2a)
p = 0, x ∈ S, (2b)

are fulfilled. Here, tα(x) are orthogonal tangential unit vectors to S and τ denotes the viscous stress tensor.
In the derivation of the normal dynamic condition (2b) viscous effects have been ignored.

An equivalent formulation of the free-surface flow problem is obtained if the second dynamic condi-
tion (2b) is replaced by the quasi free-surface condition:

v ·∇p = 0, x ∈ S. (2b∗)

Condition (2b∗) results from a combination of the kinematic and dynamic condition. In [1] it is shown
for perturbations of a uniform flow in a channel of unit depth that the Navier-Stokes equations subject to
boundary condition (2b∗) allow gravity wave solutions that satisfy the usual dispersion relation. Denoting
by C(V,v, p) the problem corresponding to the steady (RA)NS equations on V, with appropriate boundary
conditions on fixed boundaries, ∂V \ S, and conditions (2a) and (2b∗) on the free boundary, S, we propose
the following algorithm for solving the free-surface flow problem:

initialize S; solve v, p from C(V,v, p);
while (‖p(x)‖S > ε){update S := {x + jFr2p(x) | x ∈ S}; solve v, p from C(V,v, p);}
Here, j stands for the vertical unit vector. The method relies on use of boundary condition (2b∗) in each sub-
problem. Contrary to the kinematic condition (1) and the dynamic condition (2b), condition (2b∗) permits
a nonzero normal velocity and a nonconstant pressure at the approximate free boundary. Condition (2b∗) is
smooth in the sense that it holds to close approximation in a neighborhood of the actual free surface. Conse-
quently, the adjustment of the boundary induces only small disturbances in the solution. Then, the update
improves the approximation to the free-surface location. One may note that this approach is analogous to
methods for solving steady free-surface potential flow, e.g., [4]. Results of the method for a testcase from [2]
are presented in section 4.

3 Wave solutions of the discrete equations

To solve the free-surface (RA)NS problem numerically, at the expense of a discretization error, the continuous
differential equations and boundary conditions are replaced by a system of discrete equations. By consistency,
these discrete equations permit surface gravity wave solutions that obey a dispersion relation that is similar
to that of the continuous equations. Analysis of the difference between solutions of the discrete equations
and of the continuous equations yields valuable information on the properties of the discretization scheme.
Moreover, such an analysis can serve in the development of discretization schemes with special behavior, e.g.,
low numerical damping of surface gravity waves. Subsequently, we present the results of such an analysis.

We consider perturbations of magnitude ε, ε� 1, of a uniform horizontal flow with velocity V0 in a channel
of unit depth. Through asymptotic expansion and Fourier analysis, one can show that the system of equations
resulting from the discretization of the incompressible NS equations and the boundary condition (2b∗) on a
uniform mesh with meshsize h, allows a steady gravity wave solution that is proportional to exp(θ1x1 +θ2x2),
(θ1, θ2) ∈ C2, provided that the dispersion relation

V 2
0 ∂c

1
h(θ1) ∂s

1
h(θ1) = −Fr−2 E(−θ2)−E(θ2)

E(−θ2)
∂p

2
h(θ2)

− E(θ2)
∂p

2
h(−θ2)

(3)

is obeyed. Here, ∂c
1
h(θ1) denotes the symbol of the discrete approximation to the x1-derivative of the velocity

in the convective term of the momentum equations, ∂s
1
h(θ1) stands for the symbol of the x1-derivative of the

pressure in the quasi free-surface condition, ∂p
2
h(θ2) represents the symbol of the x2-derivative of the pressure

in the momentum equations and E(θ2) denotes the symbol of the impermeability condition, v = 0, at the
bottom boundary. Solutions of (3) should be compared to solutions of the dispersion relation corresponding
to the continuous problem, viz., (θ1, θ2) = (ik, k) with V 2

0 = Fr−2k−1 tanh(k). Indeed, it can be verified by
Taylor expansion of the Fourier symbols that for a consistent discretization, (θ1, θ2) by (3) approach (ik, k)
as h tends to 0.

For the discretization employed in the numerical experiments, figure 1(l) displays the relative difference
between the wavelength of a stationary wave solution of the continuous equations, λ = 2π/k, and the
wavelength of a stationary wave solution of the discrete equations, λh = 2π/=(θ1), with θ1 according to (3),
versus the Froude number, for various values of the meshwidth h. Figure 1(r) shows the associated wave
attenuation per wavelength, νh = exp(<(θ1)λh).
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Figure 1: Relative difference in wavelength of stationary wave solutions of the discrete equations and of
the continuous equations (l) and numerical wave damping (r), versus the Froude number for meshwidth
h = 1/10 (2), h = 1/20 (+), h = 1/40 (◦) and h = 1/80 (3).

4 Numerical Experiments & Results

To test the algorithm described in section 2 and verify the results of the analysis presented in section 3, we
conducted numerical experiments for the subcritical flow over a bump in a channel of unit depth at Fr = 0.43
and Re = 3 × 106, with bumpheight E = 0.2, as described in [2] and, to reduce the non-linearity, with
E = 0.18. The experiments were performed on grids with different meshwidths. In each case, exponential
grid stretching was applied to resolve the boundary layer at the bottom. The steady RANS problems were
solved by the method described in [3]. After each evaluation, the grid was adapted using relative vertical
stretching and an initial estimate on the adapted grid was generated by linear interpolation from the solution
on the previous grid.

Figure 2 displays the computed wave-elevation and the measurements from [2]. In [2] a (nondimension-
alized) wavelength λ = 1.1± 10% and an amplitude a = 4.5× 10−2± 15% is stated for the measurements of
the trailing wave. The numerical results on a grid with horizontal meshwidth h = 1/32 yield λ = 1.09 and
a = 6.4× 10−2. Hence, the computed amplitude is slightly overestimated and the wavelength is within the
uncertainty interval.

The table in figure 3 lists the wavelength and the wave-attenuation according to the numerical results,
for E = 0.18, and according to dispersion relation (3). The numerical results and the predictions by (3)
exhibit good agreement. The differences are within the uncertainty that is introduced by determining the
wavelength and the wave-attenuation from the computed wave-elevation.
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Figure 2: Computed wave elevation for h =
1/32 and measurements from [2].

wavelength attenuation
h comput. analysis comput. analysis

1/10 1.30 1.27 0.74 0.75
1/20 1.22 1.19 0.94 0.95
1/40 1.18 1.17 0.99 0.99
1/80 1.17 1.16 1.00 1.00

Figure 3: Wavelength and wave attenu-
ation of the numerical results, for E =
0.18, and by dispersion relation (3) for h =
1/10, 1/20, 1/40, 1/80.

Figure 4 displays the computed wave-elevation on the h = 1/80 grid after consecutive subproblem evalu-
ations, when the initial estimate of the free boundary is the undisturbed surface. Observe that already after
a single evaluation a wave-solution is obtained.

The table in figure 5 lists the pressure defect at the free surface after successive subproblem evaluations,
with ‖p‖S = h

∑
|pi|. The results reveal that 2 evaluations suffice to reduce the pressure defect by an order

of magnitude. This indicates that the pressure defect and, hence, the boundary position converge linearly
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with the number of subproblem evaluations. However, the evaluations become increasingly less expensive,
because the error in the initial estimate that is obtained from the previous solution, decreases proportional
with the pressure defect. As a consequence, for the testcase with E = 0.18, the computations were only
marginally more expensive than a fixed domain computation; see also [5].
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Figure 4: Wave elevation obtained after con-
secutive subproblem evaluations for E = 0.18
and h = 1/80.

# ‖p‖S
1 5.38× 10−1

2 1.62× 10−1

3 3.46× 10−2

4 7.96× 10−3

5 2.47× 10−3

6 7.66× 10−4

7 2.17× 10−4

8 9.51× 10−5

Figure 5: Number of subproblem evaluations
and corresponding pressure defect at the free
surface for E = 0.18.

5 Conclusions

We presented a computational method for the efficient numerical solution of steady free-surface Navier-Stokes
flow and a method for analyzing the properties of the discretization scheme.

The computational method solves a sequence of subproblems, with a quasi free-surface condition imposed
at the free surface. After each subproblem evaluation, an improved approximation to the free-surface location
is obtained. Numerical results were presented for the flow over a bottom-bump. The results agree well with
measurements. Moreover, for the testcase presented, the method displays linear convergence of the boundary
position with the number of subproblem evaluations. The results indicate that the method indeed permits
efficient solution of steady free-surface Navier-Stokes flows.

The method for analyzing the properties of the discretization scheme employs asymptotic expansion
techniques and Fourier analysis to determine the dispersion relation for the system of discrete equations.
Results of the analysis were compared with numerical results on grids with different meshwidths. The
comparison reveals good agreement between the predictions from the analysis and the numerical results. We
expect that the method can serve in the development and assessment of discretization schemes.
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