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ABSTRACT
This paper describes a finite element numerical scheme for modelling the wave-induced loading on a
horizontal cylinder.  A numerical wave tank is utilised with a σ -transformation applied to regions
upwave and downwave of the cylinder in order to take advantage of the mapping between free surface
and bed.  The region around the cylinder is discretised using a Voronoi mesh, with free surface tracking
achieved using the Wu and Eatock Taylor (1994) scheme.  In this case, the free surface velocities are
determined using an accurate higher order interpolation scheme.  A combination of the Sommerfeld
radiation condition and a damping zone is used to eliminate end effects at the far radiation boundary.
Results are presented for sloshing free surface motions in a rectangular tank, progressive waves with and
without an immersed horizontal cylinder.  Promising agreement is achieved with the analytical and
experimental force data of Ogilvie (1963) and Chaplin (1984).

INTRODUCTION
For offshore structures subject to loading in the inertial regime, fully nonlinear potential theory is
necessary for predicting relatively large free surface or body motions.  Whereas first and second order
potential theories have been developed for small amplitude motions, the effects of higher order
nonlinearity become increasingly evident in steep waves or where body motions are significant.  Wu and
Eatock Taylor (1995) have demonstrated that the finite element method can be substantially more
efficient than the boundary element method for solving such problems.  This is because, although the
finite element method involves discretising the entire domain unlike the boundary element method,
savings can be made because the finite element matrix is sparsely populated and the coefficients are
straightforward to determine.  The present paper describes a continuation of the Wu and Eatock Taylor
model, whereby a σ -transformation is used to stretch the mesh linearly between the bed and free surface
in regions where the fluid is continuous and there is a unique mapping between the bed and free surface.
In other regions where for example a horizontal cylinder is situated, Wu and Eatock Taylor’s (1995) finite
element solver is used with an unstructured Voronoi mesh fitted to the problem boundaries.  In the former
case, the mapping inherently takes care of the moving boundary.  In the latter, the free surface is moved
forward in time by calculating the displacements according to the surface velocity components.

MATHEMATICAL FORMULATION
Consider a two-dimensional free surface flow of an incompressible inviscid fluid without surface tension.
We assume the flow is irrotational, and potential theory applies whereby the velocity vector u is related to
the velocity potential φ  by φ∇=u .  Invoking irrotationality, 02 =∇ φ  throughout the fluid domain.  The
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FINITE ELEMENT FORMULATION
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integrating over the domain, Wu & Eatock Taylor (1995) derived
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Replacing φ  with its approximation and the potential derivative with 2f , gives
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in which 1S  is the boundary where the velocity potential is specified, and 2S  is the boundary where the
normal derivative of the velocity potential, 2f , is known.  In matrix form, this may be written
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SIGMA-TRANSFORMED FORMULATION

We choose stretched co-ordinates between the bed and free surface such that 
l
xX = , 

h
dz +=σ  and T =

t, where l is the length of the domain, d is the still water depth and h is the total water depth ( η+= dh ).
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The integral expressions are evaluated using cubic formulae, and the matrix equation solved by Gaussian
elimination.

VELOCITY CALCULATION

The velocity components are 
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the free surface, the velocity components are used to estimate rates of change of free surface elevation
and velocity potential with time.  The σ -transformed free surface kinematic boundary condition gives
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.  A fourth-order Runge-Kutta scheme is used to

step free surface elevation and potential forward in time.

RESULTS
Sloshing in a Fixed Rectangular Tank
Here, a tank of length twice that of the still water depth is considered.  The initial elevation is sinusoidal
such that one wavelength fits the tank. Almost exact agreement was obtained with Wu and Eatock
Taylor's (1994) second order analytical solution when the wave amplitude to depth ratio da / = 0.001.
Fig.1 depicts the time history of the free surface at the tank centre for a wave of greater amplitude da / =
0.1.  The results from both the σ -transformed and Wu and Eatock Taylor (1995) schemes are almost
identical.  The effect of higher order wave nonlinearity is evident with a phase shift evident and higher
free surface maxima than for the second order potential solution.  The effect of nonlinearity can also be
seen in Fig. 2 which shows the free surface profile along the tank at different times during a cycle.  There
is a narrower central peak and wider trough than for a linear sinusoidal standing wave.  The fixed
positions of nodes that exist for small amplitude cases are not present here.  These results are in close
agreement with those of Chern et al. (1999).  Fig. 3 depicts the spatial free surface profiles along the tank
for a relatively large amplitude case ( da / = 0.05) where the wavelength of the initial sinusoidal free
surface elevation is half the length of the tank.  Again, the crests are clearly sharper and troughs shallower
than for linear sinusoidal motions.
Sloshing in a Base-excited Tank
Wu et al. (1998) gave the linear solution for free surface motions of inviscid liquid in a tank where the
base was oscillated horizontally.  Fig. 4 illustrates the very close agreement between the finite element
model predictions and the analytical solution for a near resonant case, where the excitation frequency

oωω 1.1=  (and oω is the natural sloshing frequency of the tank).  The finite element scheme predicts
increasingly higher peaks than the analytical model as the initial oscillations grow in amplitude; this is
again due to high order nonlinearity.
Regular Waves
Progressive waves were generated by imposing the linear theory horizontal velocity distribution at the left
hand boundary of the domain.  The velocity amplitude was ramped up over a predetermined period to
avoid spurious oscillations.  At the right hand end of the tank, wave absorption was achieved using a
combination of the Sommerfeld radiation condition with a damping zone.   Fig. 5 represents the free
surface evolution along the tank with time, whereby spatial profiles are plotted at time intervals of twice
the wave period.  The overlaid plots demonstrate the repeatability of the wave generation process.  The
first and second order components of waves of steepness ka  up to 0.194, were found to be almost
identical to analytical values from Stokes' second order theory.
Horizontal Cylinder Under Regular Waves
In order to insert a horizontal cylinder in the wave tank, a combination of structured and unstructured
finite element meshes was used.  A typical example of the unstructured region is shown in Fig. 6.  The
total force may be calculated by integrating the surface pressure profile around the cylinder.  The first and
second order force components in the vertical and horizontal directions were determined using Fourier
analysis.  Reasonable agreement is obtained with Ogilvie's (1963) semi-analytical model and Chaplin's
(1984) experimental data, as the following example illustrates.  For a non-dimensional wave frequency
ω =1.8495, non-dimensional depth of immersion 18.0=cd , and non-dimensional cylinder radius A =

0.06, Ogilvie predicts 0430.0/)1( =AF , Chaplin obtains 0415.0/)1( =AF , whereas the present scheme

predicts 0435.0/)1( =AFx and 0429.0/)1( =AFz .  Moreover, for the second order mean vertical force,
2)2( / AFz , the corresponding results from Ogilvie, Chaplin and the present scheme are 0.0914, 0.0944 and

0.0930, respectively.

CONCLUSIONS
A numerical wave tank has been described based on finite element models with σ -transformed and
unstructured mesh systems.  Simulations of nonlinear sloshing waves in fixed and base-excited tanks



have been found to agree well with analytical solutions, and the numerical results of Chern et al. (1999).
Progressive regular waves have been simulated in close agreement with Stokes' second order theory.
Sensible estimates have been made of the first and second order forces on a submerged horizontal
cylinder under waves, in comparison with Ogilvie (1963) and Chaplin (1984).
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Fig.1  Free surface motions at tank centre Fig.2  Wave profiles: a = 0.1

Fig. 3   Double standing wave profiles: a = 0.05 Fig.4  Free surface motions at left wall:
           Base-excited tank: ω =1.1 oω

Fig. 5  Evolution of regular waves Fig. 6  Voronoi mesh about cylinder
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