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1 Introduction

According to the linear hydrostatic equations of motion, supercritical free-surface flow (Froude
number F > 1) past a locally confined obstacle gives rise to two oblique wavetrains, oriented at an
angle cot−1(F 2 − 1)1/2 to the flow direction, that form a wake downstream, and these theoretical
predictions have been confirmed experimentally (see, for example, Baines [1] §2.2). We shall be
concerned with analogous phenomena in stratified flow over locally confined topography that have
been observed in satellite photographs of atmospheric internal-wave patterns generated by isolated
islands (Gjevik & Marthinsen [2]).

In the context of stratified flow, under certain conditions, it is possible to set up a finite-
amplitude theory that allows one to examine the role that nonlinear effects in the flow over the
topography may play in generating supercritical wakes downstream. More specifically, when the
topography is more elongated in the spanwise than in the streamwise direction, the nonlinear
three-dimensional (3-D) equations of motion can be handled via a matched-asymptotics procedure.
Three specific flow configurations are discussed in detail: (a) nonresonant flow of general (stable)
stratification over finite-amplitude topography in a channel of finite depth; (b) resonant, uniformly
stratified flow in a channel of finite depth; and (c) vertically unbounded, uniformly stratified flow
over finite-amplitude topography. In all three cases, supercritical wakes are found downstream, but
in (b) and (c) these wakes are induced by nonlinear interactions precipitated by 3-D effects in the
flow over the topography, and are significantly stronger than their linear counterparts.

2 Formulation

We shall be concerned with steady, inviscid, incompressible, stratified flow. It is convenient to work
with the streamfunctions Ψ, Φ:

u = ∇Φ × ∇Ψ , (1)

and take ρ = ρ(Ψ) so that incompressibility and mass conservation are automatically satisfied.
Furthermore, assuming that the flow starts from rest, one may show, using the circulation theorem,
that the vorticity, ω = ∇ × u, lies in surfaces of constant ρ so that

ω · ∇Ψ = 0 . (2)

On the hypothesis of no upstream influence, the flow is undisturbed far upstream (x → −∞):

Ψ ∼ U0z , Φ ∼ y , ρ ∼ ρ0(z) (x → −∞) ,

U0 and ρ0(z) being the background flow speed and density profile, respectively. Hence, ρ =
ρ0(Ψ/U0) and, making use of (2), the momentum equation implies that

ω · ∇Φ =
1
ρ

dρ

dΨ

{
1
2U2

0 − 1
2u

2 +
g

U0
(Ψ − U0z)

}
. (3)

Having solved for the density ρ in terms of Ψ, and since ω = ∇ × ∇Φ × ∇Ψ, equations (2) and
(3) may now be viewed as two equations for determining Ψ and Φ and thereby the velocity field via
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(1). This equation set is intractable, however, and, to make further analytical progress, we shall
focus on long, weakly 3-D disturbances in a Boussinesq fluid:

µ =
H

L
, α =

L

D
, β =

HN2
0

g
→ 0 ,

where N0 is a characteristic Brunt–Väisälä frequency, H is a vertical lengthscale and L,D are the
topography lengthscales in the streamwise (x-) and spanwise (y-) direction, respectively. On the
other hand, the nonlinear parameter, ε = h/H, h being the topography amplitude, is not assumed
to be small.

Making variables dimensionless using L as the characteristic horizontal lengthscale, H as the
characteristic vertical lengthscale and U0 as the velocity scale, and after the re-scaling

Ψ = z + ψ(x, Y, z) , Φ = y + αφ(x, Y, z) ,

the governing equations (2) and (3) become

Ψzz +
N2(Ψ)

F 2 (Ψ − z) = O(α2, µ2) , (4)

J(v,Ψ) = Ψz ΨzY − ΨY Ψzz + O(α2, µ2) , (5)

where F = U0/(N0H) is the Froude number, Y = αy is a stretched spanwise coordinate, and

v = J(Ψ, φ)

is the spanwise velocity component, J(a, b) = axbz − azbx being the Jacobian.
Based on (4) and (5), one may devise a perturbation solution scheme: first, the leading-order

approximation to Ψ, Ψ(0) = z + ψ(0) say, can be readily obtained by solving (4) subject to appro-
priate boundary conditions on the topography and the upper boundary of the flow. The spanwise
velocity component, v(0), then follows from (5) by integrating along x on surfaces of constant Ψ(0):

v(0) =
∂

∂Y

∫ x

dx′ ψ(0)
z

∣∣∣∣
Ψ(0)

.

This perturbation expansion becomes nonuniform, however, far upstream and downstream of
the topography. It turns out that the far-field disturbance is weakly nonlinear but not weakly 3-D,
invalidating the scalings chosen earlier, and it is governed by the linear 3-D hydrostatic equations
to leading order. To fully determine the flow field, it is necessary to match the nonlinear, weakly
3-D disturbance over the topography with the weakly nonlinear, 3-D far-field response.

3 Summary of Results

The matching procedure indicated above was carried out for three particular flow configurations.
Specifically,

(a) Non-resonant flow over finite-amplitude topography in channel of finite depth. In this
instance, there is an infinity of long-wave modes and it is assumed that F is not close to any of the
critical Froude numbers:

· · · < FM < F < FM−1 < FM−2 < · · · < F1 .

The downstream response consists of an infinite number (n ≥ M) oblique wavetrains, each oriented
at angle tan−1(Fn/

√
F 2 − F 2

n) to the flow direction, forming multiple supercritical wakes. The
amplitudes of these wakes are not affected seriously by nonlinearity in the near-field flow. On the
other hand, 3-D effects inhibit breaking of the flow over the topography, increasing the critical
steepness for overturning by O(α).
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(b) Uniformly stratified, resonant flow in a channel of finite depth. When the flow speed is close
to the speed of one of the long-wave modes,

F ≈ FM ,

the flow is resonant. Furthermore, when the flow is uniformly stratified, small-amplitude topogra-
phy induces a finite-amplitude response under resonance conditions [3]. Qualitatively, the geome-
try of the wakes generated downstream is similar to those found in the non-resonant case. The
generation mechanism, however, is quite different here: nonlinear interactions in the flow over the
topography play an important part, and the amplitudes of the downstream wakes are much stronger
than their linear counterparts (by a factor of O(α−2)).

(c) Vertically unbounded, uniformly stratified flow. Here the flow may be regarded as resonant
for all flow speeds because the spectrum of long-wave modes is continuous. Furthermore, according
to linear theory, the 3-D wave pattern induced by locally confined topography remains locally
confined. We find that, owing to the same nonlinear mechanism as in (b) above, multiple wakes
are generated downstream so, in contrast to linear theory, the nonlinear wave pattern is not locally
confined. The wake angles are given by tan−1(1/

√
n2 − 1) (n ≥ 2).
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