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This abstract describes a new Boussinesq-type model which overcomes the restriction to small

values of kh which is inherent in traditional Boussinesq methods (k = j~kj the wavenumber and h

the water depth.) The term Boussinesq-type model is used here in a broad sense to describe a two-

dimensional approximation to the exact potential ow problem, where the vertical coordinate has

been eliminated from the formulation. This elimination is done, without approximation, by repre-

senting the solution as an in�nite power series in z. The way in which this series is truncated (as

well as the particular choice of velocity variable) determines the �nal form of the Boussinesq-type

model. Traditional Boussinesq methods obain approximate linear dispersion relations (expressed

in terms of non-dimensional wave celerity c2

gh
= !2

k2gh
= tanhkh

kh
) which are rational functions of

(kh)2. The exact relation is however trancendental, and tends to 1
kh

as kh!1, which can not be

matched asymptotically by a function of (kh)2. By introducing the FFT, and thus allowing a fast

evaluation of the Hilbert transform, algebraic approximations to the dispersion relation which are

asymptotically correct in both limits of kh can be investigated.

Following [5] (and others) we consider weakly nonlinear solutions to the exact Laplace problem

by expressing the free-surface boundary conditions in terms of the potential at the free-surface,

�t = (1 +r� � r�)~�z �r~� � r� (1)

~�t = �g� � 1
2
(r~�)2 � 1

2
(1 +r� � r�)~�2z

where r = ( @
@x
; @
@y
) and ~� = �(~x; �; t). The surface potential is then expressed as a perturbation

expansion in the wave slope �, and each perturbation potential is Taylor expanded from z = 0 to

z = �. Thus,

~� =
MX

m=1

M�mX
k=0

�k

k!

@

@z
�̂(m) (2)

where �̂ = �(~x; 0; t). Expressed in this form, the closure which allows us to step forward in time

is a relation for the vertical component of velocity w, in terms of the horizontal component of

velocity ~u, where both quantities are evaluated on z = 0. This relationship must naturally satisfy

the Laplace equation and the bottom boundary condition

�z +r� � rh = 0 z = �h; (3)

in which case the problem is solved. To be attractive computationally, the method should be of

order N the number of unknowns on the free-surface.

Consider �rst a at bottom. If the solution is expanded in a Taylor series about z=0, and the

Laplace equation is invoked then

�(~x; z; t) =
1X
n=0

(�1)n
 
z2n

2n!
r2n�̂+

z2n+1

(2n+ 1)!
r2nw

!
: (4)

The bottom boundary condition may now be expressed as

Cos(hr)w+ Sin(hr) ~u = 0 (5)
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where the Sin and Cos Taylor series operators are de�ned by

Sin(Lr) = Lr�
L3r3

6
+
L5r5

120
+ :::

Cos(Lr) = 1�
L2r2

2
+
L4r4

24
+ ::: (6)

and r is understood as the gradient when applied to a scalar and the divergence when applied

to a vector. If the operators in Equation (6) are truncated, and replaced by �nite-di�erence

operators, the result is a sparse matrix equation for w in terms of ~u. This corresponds to a classical

Boussinesq method. Imbedded in Equation (5) is the linear dispersion relation. To see this note

that in the frequency domain the operator r = ik (in one horizontal dimension), so we can write

W = �Tan(hr)U = �iTanh(kh)~U , where U;W are the frequency-domain velocity components

and the Tan and Tanh operators are de�ned in the way of Equation (6). The linear free-surface

boundary condition says that grw = �~utt or W = !2

ig~k
U . Combining these two expressions gives

the exact linear dispersion relation !2 = gk tanh (kh). Thus a classical Boussinesq method can be

thought of coming from the equation

W =
Tanh(~kh)

~kh
ih~k � ~U; (7)

where Tanh(~kh)=~kh is approximated by truncated Taylor series expansion of Sinh~kh and Cosh~kh,

and ih~k is associated with hr to get a method in physical space. Such classical methods un-

fortunately diverge beyond kh = �=2 due to the �rst singularity of tanh on the imaginary axis.

This problem can however be avoided by replacing the Taylor expansions by Pad�e expansions,

resulting in modi�ed (or enhanced) Boussinesq methods. For example, the Pad�e(4,4) expansion

of Tanh(~kh)=~kh is

1 + 1
9
�2 + 1

945
�4

1 + 4
9
�2 + 1

63
�4

where � = ~kh, which leads to a very accurate method out to kh = 6 (see [3].)

Here we go one step further by introducing the Hilbert transform operator H , which is most

conveniently written in Fourier space as FfH�g = �iFf�g where F indicates a Fourier transform.

(The operator applies a 90� phase shift in Fourier space.) This allows even powers of � to appear

in the rational approximation for tanh �=�. The trick is to use the identity

tanh (�) �
p1

1 + p1
; p1 =

sinh (�)

cosh(�)� sinh(�)
: (8)

By taking a Pad�e(m;n) expansion of p1 with n < m the correct assymptotics are obtained for both

limits of �. Figure 1 shows the relative error in linear dispersion for a Pad�e(4,1) and a Pad�e(8,2)

approximation of p1. The speci�c methods obtained in these two cases are:

(15 + 9�+ 9�2 + 4�3 + �4)W = �(15 + 9�+ 4�2 + �3)ih~k � ~U (9)

and

(14175+ 8505�+ 9135�2 + 4410�3+ 1575�4 + 420�5 + 84�6 + 12�7 + �8)W (10)

= �(14175 + 8505�+ 4410�2 + 1575�3 + 420�4 + 84�5 + 12�6 + �7)ih~k � ~U

respectively, where the corresponding di�erential equation is obtained by associating hi~k with hr

and �i with H . The agreement with the exact linear dispersion relation for all wavenumbers is

remarkable.

In order to create a method which is easily implemented, it is desirable perform some further

manipulation. Since the left hand sides of Equations (9) and (10) represent the implicit part of

2



the solution, it is convenient to convert these polynomials into ones with only even powers of kh.

(When odd powers are retained, the solution must be obtained iteratively.) It turns out that any

polynomial f(x) can be written with only even powers by multiplying it with f(�x). Multiplying

both sides of the equation by this polynomial produces an explicit matrix equation for w in terms

of ~u, at the cost of doubling the highest order of the derivative which must be calculated. Note

also that if � = �1 is a root of the original polynomial, then both �1 and ��1 are roots of the

new polynomial; so to get a stable method, the original polynomial must have no real roots. The

odd powers of � which remain in the numerator are evaluated by taking horizontal derivatives of

rH~u which is found using the FFT.

Our �rst application of the method is to the in�nite depth, non linear standing wave solution

of [4]. Figure 2 shows the wave elevation at the center of the tank as a function of time, calculated

using the Pad�e(8,2) method. 65 points have been used on the free-surface and 40 points per

wave period, while the non linearity retained in the free-surface boundary condition corresponds

to M = 5 in Equation (2). After 25 periods the mass has been conserved to within 2x10�7 and

energy to within 4x10�5 of the initial conditions. This is a periodic solution, and therefore well

suited to a method which incorperates the FFT. In order to treat non-periodic problems, we apply

the method presented in [2]. The idea is to split the solution into two potentials, one of which is

known analytically (or solved by another method), while the other is found by the above described

technique. The known potential corresponds to a ux into or out of the domain and can represent

a wave maker or absorber for example. This solution can be any appropriate solution to the

Laplace equation and the bottom boundary condition, as long as the sum of the two potentials

satis�es the the free-surface boundary conditions.

When the bottom slope is retained in the bottom boundary condition, it takes the form

Cos(hr)w0+ Sin(hr) � ~u0 +r h � [Cos(hr) � ~u0 � Sin(hr)w0] = 0: (11)

In this case, derivation of the approximate equation is more involved. When multiplying powers

of hr, terms involving rh; (rh)2;r2h etc. arise. Since h is variable, r and h do not commute,

and their ordering a�ects the product. The details will appear in a future publication [1]. We

present however some prelimary calculations. Figure 3 shows a wave with period T = 8s shoaling

up a sloping beach as computed by the Pad�e(8,2) method using the linear free-surface boundary

conditions. Also shown is the amplitude envelope predicted by linear theory, and the depth

variation.
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Figure 1: Relative errors in dispersion for Fourier-Boussinesq Pad�e(4,1) and Pad�e(8,2) methods.
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Figure 2: Time history of the elevation at the center of the tank with a non linear standing wave

as the initial condition.
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Figure 3: Linear shoaling for a wave of period T = 8s over the bottom shown. A wavemaker

generates the waves from the left boundary and a sponge layer absorbs them at the right boundary.
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