Proceedings

15th International Workshop

on

Water Waves and Floating Bodies

27 February – 1 March 2000

Dan Caesarea

ISRAEL

Edited by T. Miloh & G. Zilman

Faculty of Engineering Tel-Aviv University ISRAEL 699 78

Preface

The 15th International Workshop on Water Waves and Floating Bodies (IWWWFB) was organized by Prof. Touvia Miloh, Assoc. Dean Faculty of Engineering, Tel-Aviv University. The Workshop was held in the Dan Caesarea Hotel, Caesarea, Israel from the 27th February to the 1st March, 2000.

A total of 49 abstracts were accepted for presentation. The abstracts were selected by a scientific committee consisting of T. Miloh and the organizers of the two previous workshops, Professors Robert Beck & William Schultz from the University of Michigan and Professor Aad Hermans of the Delft University of Technology. The following pages contain the extended abstracts. They are listed in alphabetical order of the first author's name. For the first time the abstracts of IWWWFB appear prior to the conference on the Web Site http://www.eng.tau.ac.il/~miloh/iwwwfb

The 15th IWWWFB was sponsored by:

Tel-Aviv University, Faculty of Engineering
Technion, Israel Institute of Technology
Minerva Center for Nonlinear Physics of Complex Systems
Henri Glasberg Extraordinary Chair for International Cooperation
Gordon Center for Energy Studies
Association of Engineers and Architects of Israel
Office of Naval Research Europe

T.M., Feb. 2000, Tel-Aviv

ISBN 965-274-288-0

Copyright © 2000. All rights reserved.

This work relates to Department of the Navy Grant N00014-00-1-1006 issued by the Office of Naval Research European Office. The United States has a royalty-free license throughout the world in all copyrightable material contained herein.

CONTENTS

Agnon, Y. and H.B. Bingham, A Fourier-Boussinesq method for nonlinear wave
propagation on a variable depth fluid1
Akylas, T.R., Supercritical wakes in stratified flows
Ando, S., Wind waves and swells: probabilistic models for directions of propagation for
moving ships8
Borthwick, A.G.L., M.S. Turnbull and R. Eatock Taylor, Nonlinear wave loading using
sigma - transformed and unstructured finite element meshing
Brummelen, H. van and H. Raven, Numerical solution of steady free-surface
Navier-Stokes flow
Cadby, J.R. and C.M. Linton, Scattering of oblique waves in a two-layer fluid20
$\textbf{Chen, XB.,} \textit{Peculiar properties of ship -motion Green functions in water of finite depth.} \dots 24$
Clamond, D. and J. Grue, Dynamics of the transient leading part of a wave train28
Daalen, E.F.G. van, J. Gerrits, G.E. Loots and A.E.P. Veldman, Free surface anti-roll
tank simulations with a volume of fluid based Navier-Stokes solver32
Dingemans, M.W. and A.C. Radder, The use of the CL-equation as a model for
secondary circulations
Doctors, L.J. and A.H. Day, The squat of a vessel with a transom stern40
Drimer, N., M. Glozman, M. Stiassnie and G. Zilman, Forecasting the motion of
berthed ships in harbors44
Evans, D.V. and B.J. Shipway, A continuum model for multi-column structures
in waves
Fontaine, E., M. Landrini and M.P. Tulin, On modeling the post breaking phase:
splashing51
Greco, M., O. Faltinsen and M. Landrini, An investigation of water on deck
phenomena55
Grilli, S., P. Guyenne and F. Dias, Numerical computation of three-dimensional
overturning waves59
Grue, J., A. Jensen, PO. Rusås and J.K. Sveen, Solitary waves in stratified
fluid: modelling and experiments63
Gueret, R. and A.J. Hermans, Behavior of a ship with elastic distortions in
periodic waves67
Hamilton, J.A. and R.W. Yeung, Non-linear motion of a submerged hody in waves

Huseby, M., A. Jensen and J. Grue, An experimental investigation of ringing loads	5
on a vertical cylinder in transient waves	75
Iafrati, A. and A. Korobkin, Liquid flow close to intersection point	79
Indeitsev, D. and Yu. Mochalova, Trapped modes above a die oscillating on the	
bottom of a wave channel	83
Iwashita, H., On unsteady waves generated by a blunt ship with forward speed	8
Jiang, T. and R. Henn, Nonlinear waves generated by a surface-piercing body usin a unified shallow-water theory	C
Judge, C. and A. Troesch, Asymmetry and horizontal velocity during water impact	95
Kashiwagi, M., Wave interactions with a multitude of floating cylinders	99
Kim, Y., Numerical analysis of sloshing problem	103
Kimmoun, O. and C. Kharif, On the behaviour of steep short-crested waves in deep	
water and their effects on structures	10
Landrini, M. and P.A. Tyvand, Impulsive free-surface flow due to a steady line source	e.
at the bottom of a uniform fluid layer	110
Lin, H.J. and M. Perlin, The velocity and vorticity fields beneath gravity-capillary	
waves exhibiting parasitic ripples	114
Malenica, Š. and M. Zalar, An alternative method for linear hydrodynamics of air	
cushion supported floating bodie s	11
Molin, B., On the sloshing modes in moonpools, or the dispersion equation for	
progressive waves in a channel through the ice sheet	12
Mori, K. and S. Nagaya, Wave making resistance of a submerged hydrofoil	
with downward force	120
Newman, J.N., Diffraction of water waves by an air chamber	130
Noblesse, F., C. Yang, and D. Hendrix, Steady free-surface potential flow due	
to a point source	134
Ohkusu, M., Analysis of wave force on a large and thin floating platform	13
Pelinovsky, E. and C. Kharif, Simplified model of the freak wave formation	
from the random wave field	14
Peng, W. and D.H. Peregrine, Pressure-impulse theory for plate impact on water	
surface	146
Peregrine, D.H. and M. Brocchini, An instantaneous measure of the strength of a	
breaker: "foot and toes"	150

Retzler, C.H., J.R. Chaplin and R.C.T. Rainey, Transient motion of a vertical cylinder:
measurements and computations of the free surface
Rognebakke, O.F. and O.M. Faltinsen, Damping of sloshing due to tank roof impact158
Scolan, YM. and A. A. Korobkin, Design of three-dimensional bodies subject to water
<i>impact</i> 162
Shemer, L., Haiying Jiao and E. Kit, Nonlinear wave group evolution in deep
and intermediate-depth water: experiments and numerical simulations166
Subramani, A.K. and R.F. Beck, Suppression of wave breaking in nonlinear water
wave computations including forward speed170
Tuck, E.O., Numerical solution for unsteady two-dimensional free-surface flows174
Ursell, F., The metacentre in the stability of ships. Some difficulties
Vanden-Broeck, JM. and B. Spivak, Free-surface wave damping due to viscosity
and surfactants
Westhuis, J. H., E. van Groesen and R. Huijsmans, Long time evolution of
unstable bichromatic waves
Wu, G.X., Initial pressure distribution over a wavemaker after an impulsive motion188
Wu, G., Y. Liu and D.K.P. Yue, Numerical reconstruction of nonlinear irregular
wave-field using single or multiple probe data191
Zhang, J., M. McIver, P. McIver and C.M. Linton, Embedded trapped modes for arrays
of cylinders195