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1 Introduction

The number of closed form solutions for dynamic interaction between elastic
deformation of a floating thin plate and sea waves is limited. So far, we are
aware of Stoker’s [1] analytic solution who considered the 2-D case of an infinitely
wide elastic thin half-plate floating over shallow water. In this paper we present
a closed form solution of the hydroelasticity problem for a thin circular plate
floating on the surface of shallow water.

2 Governing equations.

A thin impermeable elastic circular plate of radius ro covers a part of the free
surface of shallow water of depth h. The elastic plate is swept together with the
free surface. The edges of the plate are free of shear forces and bending moments.
The amplitude of the incident wave, as well as the free surface elevation induced
by the bending and twisting plate are assumed to be small. The fluid is assumed
to be inviscid and its motion irrotational. To describe the motion of the plate
and the fluid motion the linearized shallow water theory is invoked.

Incident progressive monochromatic wave with wave number k£ and wave fre-
quency w propagates in the positive direction of the z-axis. Time-harmonic mo-
tion of small amplitude with complex time dependence exp(—iwt) are considered
and applied to all first-order oscillatory quantities.

We decompose the physical domain into two regions: plate ( r < ro) and
water (r > rp). Thus, the velocity potential in the plate region is denoted by ¢,
and the velocity potential in the water region is denoted by ¢35 = ¢2 + ¢,,, where
¢- is the velocity potential affected by the plate motion, and ¢,, is the potential of
the ambient wave. Accordingly, the vertical displacement of the plate is denoted
by w,, and the vertical displacement of the free surface wj is represented as a
sum of the incident wave elevation w,, and the wave elevation w; induced by the
plate, i.e.: wi = wy + Wy,

In the water the governing equation for the potential ¢ is:

V2¢2 + k2¢2 = 07 (1)

where in the polar system of coordinates (r,8):
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The governing equation for the 'pla,te region can be written as:

V2=

(Ve +aV? +b)¢, =0, ®3)

where a = (pg — w?m)/D and b = w?p/Dh. Here p is the water density, g is the
acceleration of gravity, D is the equivalent plate flexural rigidity, and m is the
mass of the plate per unit area.

The water and plate region have to be matched at the boundary r = ro.
Generally speaking, at this line the physical quantities such as fluid pressure, free
surface and plate elevations, and the fluid velocity components have to be con-
tinuous. However, following Stoker [1], we satisfy only two transient conditions:
the conservation of energy and mass fluxes through the boundary r = ry which
mathematically are expressed as continuity of the potentials ¢; » and their first
derivatives with respect to r.

Far from the plate the potential ¢; must vanish satisfying the radiation con-
dition. At the free edges of the plate the total force and bending moment vanish.
These two requirements give the following dynamic conditions at the boundary
r=ro [2]:
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where v is the Poisson’s ratio.

3 Solution of the boundary value problem.

The governing equation (3) in the plate region can be decomposed as follows:

3

H (V2 - zm)¢l = 07

m=1

where z,,, (m = 1,2, 3) are the roots of the equation 2%+ az+ b = 0 which can be
found explicitly. Thus, the potential ¢; can be written as ¢; = 3°2,_; $1,m, Where
each of the potentials ¢, ,, satisfies the equation:
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Figure 1: Plate deflection: —Re(w;) (plate radius ro = 750 m, wave amplitude
1 m, wave length 200 m, water depth h=20 m, equivalent flexural rigidity D =
2 x 10~*pgry Nm, Poisson’s ratio v = 0.3, p = 1025 kg/m?, g =9.81 m/s?). The
monochromatic wave propagates from the left upper corner to the right lower
corner. In this particular example max |Re(w,)| ~ 0.4.

The sought solution is symmetrical with respt(ect to the z-axis, and, thus, can be
n

represented as a Fourier series ¢y m = Y oo, gal,,z,(r) cos nf, where the Fourier co-
efficients (pg",)n(r) satisfy the ordinary differential Bessel equation with a bounded
solution @1 = C I (Tmr) (m =1,2,3, n =1,2,---), where 7, = Toy/Zm. Sim-
ilarly, the solution of (1) satisfying the radiation condition for each mode n can
be represented as i = C{" H®(kr), where H®M(kr) is the Hankel function.
Expanding the wave amplitude function and its velocity potential in a Fourier
series with respect to the polar angle § and employing four above mentioned
boundary conditions for each n = 0,1, - - -, we determine four unknown constants
C{ (m = 1,---,4). Once these constants are known the quantities of physical
interest can be also obtained in a closed form. For example, the plate deflection
can be written as:

- o] 3
wy(r,8) = —t—f— Z cosné Z 72 C™V L (Tir). (N

n=0 m=1

A pumerical example is represented in Fig. 1.
References

[1] J.J.Stoker. Water waves. Interscience, New York, 1957.

[2] S. Timoshenko, S.Woinowsky-Krieger. Theory of plates and shells. McGraw-
Hill, New York, 1959.

181




