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1 Introduction

As part of the research project ’a scientific infrastructure for laboratory generated
surface waves’, we have been developing a computer code to simulate free surface
water waves on a two dimensional bounded domain. It is well known that if the water
is assumed to be inviscid, incompressible and irrotational, the velocity field of the
water can be characterized with a potential function.

The set of equations describing the dynamic behaviour contains two time depen-
dent conditions at the free surface (dynamic and kinematic boundary conditions) and
Laplace’s equation for the potential in the interior of the water domain. At this mo-
ment we have assumed the other boundaries to be fixed and impermeable, but our
research aims at including moving wave generators and beaches.

When the equations are linearized, they can be solved in the frequency domain,
but for some applications solutions of the original equations are necessary. In order
to solve the nonlinear equations, the nonlinear time dependent free surface equations
have to be integrated over time and at every time stage Laplace’s equation has to be
solved on the region bounded by the free surface and the fixed walls.

Solving Laplace’s equation is the most computer-time consuming part of the nu-
merical computations. For this reason a boundary integral description of Laplace’s
equation is usually discretized (e.g. boundary element method), thus reducing the
number of unknowns. However, computing the coefficient matrix and solving the full
matrix associated with the BEM formulation are computational intensive procedures.

Instead of using a boundary element method, we have implemented a finite element
method (triangular elements and linear base functions) to solve Laplace’s equation.
The use of a finite element method was initiated by the article ’A finite element method
for fully nonlinear water waves’ by Xing Cai, et. al. (1996). In this article a method
based on a time-dependent mapping of the water domain to a fixed computational
rectangle is proposed. Numerical calculations have shown however that discretizing
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the domain directly and thus regridding the nodes at every time-stage gives more
accurate results.

Although the number of unknowns using FEM is larger than using BEM, evaluation
of the elements of the associated sparse matrix is relatively fast and because of the

banded and symmetric structure of the matrix an efficient Gauss-Elimination solver
can be used.

2 Contents of the presentation

We will discuss the benefits and limitations of applying a finite element method to
solve the nonlinear wave equations numerically. The main advantages seem to be:

e speed and memory usage: we have applied our code (on a pentium PC) to
a wavegroup propagation problem that could not be computed using a BEM
without domain decomposition (on a Cray C98)

o flexibility: the finite element grid is constructed inside the domain, providing
more control over the numerical accuracy near critical geometries.

Results will be presented of comparisons in which we have applied the numerical code
to the following three problems that have relative simple geometries:

e Sloshing wave: compared with results of the sloshing wave problem in 'Compara-
tive study of fully non-linear wave simulation programs’ initiated by Det Norske
Veritas, 1994. Given the dimensions of the water tank (70m x 160m) and an
initially steady surface profile, participants in the comparative study were asked
to compute the surface elevation at t=9.2s at x=60m. For our computations we
used a 70 x 160 grid, a 5 stage 4’th order RK method and a timestep of At = 0.1.
The table below summarizes their results added with the result obtained by using

our code.
part. nr. | resuls || part nr. result
1 -3.803 || 5 -3.820
2 -3.860 || 6 -3.803
3 -3.815 || 7 -3.720
4 -3.759 || our result | -3.798

e Propagation of wavegroups: compared with results in the PhD thesis 'Numerical
simulation of nonlinear water waves using a panel method; domain decomposition
and applications’ by Paul de Haas, 1997. The figures on the next page show the
initial surface of the wavegroup (propagating to the right), the result obtained
by Paul de Haas at t = 180 and the result of our-computations at ¢ == 180 using
a 2001 x 7 grid. The depth of the water is 12 meters and in both computations
At =03
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- Wavegroup: initial surface profile of the wavegroup
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- Wavegroup: surface after 180 seconds computed by Paul de Haas using a panel
method and domain decomposition (copied from his thesis)
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- Wavegroup: surface after 180 seconds computed with our code (no domain
decomposition and on a desktop PC)

¢ Soliton splitting over a varying bottom: compared with results from the paper
"BEM-numerics and KdV-model analysis for solitary wave split-up’ by E. van
Daalen, E. van Groesen and S. Pudjaprasetya in Computation Mechanics, vol
19: 197-187 ,1997. The figures on the next page show the topography and the
computed surface at t=8 and t=80 of a solitary wave propagating to the right
and splitting into three solitons. For this computation a uniform grid (2001 x 6)
and a 5 stage 4’th order Runga-Kutta time integration with At = 0.1 were used.
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-Soliton splitting: used bottom topography
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-Soliton splitting: solitary wave before splitting at ¢ = 8s propagating to the
right.
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-Soliton splitting: t = 80s, original solitary wave has split into three separate
solitons

3 Conclusion

A FEM based numerical solver for the kind of problems as described above seems to
be a good alternative for conventional boundary integral methods. Although more
work has to be done to investigate accuracy, stability and applicability to a wider
range of problems, results so far are encouraging. Future objectives are to implement
higher order FEM base functions, incorporate moving boundaries, introduce realistic
wave absorbers (as are being used in hydrodynamic laboratories) and to implement
the code for three dimensional situations.




