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1. Introduction

The goal of the research presented here is to investi-
gate the unsteady flow over an uneven bottom resulting in
a waterfall at its terminus as shown in Figure 1. This is a
problem that has not received much attention either
through theoretical investigation or through experimenta-
tion. Such a flow might arise from a stream with waves
approaching the waterfall or even from an earthquake
causing an uplift of the stream bottom near the waterfall.
This flow itself is clearly not of immediate practical sig-
nificance, especially for the naval architect or ocean engi-
neer, but it is related in a way to the flow in a plunging
breaking wave as we shall describe later in this paper. The
work described here is still in its formative stage and the
results presented here are only for the steady flow over an
uneven bottom.

2. Model

The model chosen for this study, the Green-Naghdi
(GN) method of fluid sheets, always yields a three-
dimensional, unsteady model for such flows. The GN ap-
proach is a continuum model in which the kinematic char-
acter of the flow is prescribed in the vertical direction.
With this restriction, the equations for modeling the flow
satisfy the boundary conditions exactly, satisfy conserva-
tion of mass and momentum exactly and are Gallilean in-
variant. In the GN method surface tension and viscosity
can be included without real penalty although such flows
are limited to laminar flows (see, for instance, Kim and

~ Webster, 1995). For the flow here, both surface tension
and viscosity will be neglected. Different levels of GN
theory depending on the degree of specified kinematic
complexity in the flow.

This approach is very different from the more classi-
cal approach in that the model for the flow (inviscid flow)
is combined with the simplification (proscription of the
vertical kinematic complexity) right from the outset. In
the classical approach, the model of inviscid flow as a po-
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Figure 1. Schematic of Waterfall

tential flow field is developed with an appeal to Kel-
vin’s theorem. Subsequently a simplification, usually
perturbation scheme involving a systematic expansion
of the field equations and boundary conditions, is in-
volved using a small parameter as a gauge for retaining
or discarding terms.

In the end, each approach has its advantages and
its blemishes. In the GN approach, the boundary con-
ditions and the conservation laws are satisfied exactly
but the fluid field is not exactly irrotational. In the
classical approach, the fluid field is irrotational but the
boundary conditions and the conservation laws are only
approximately satisfied (i.e., satisfied only up to the
order of the terms discarded in the expansions). An-
other way of looking at the difference is that the classi-
cal method is correct locally but approximate globally,
and the GN method is the opposite. As with all mod-
eling problems, determination of which approximation
scheme is the most appropriate for a given problem
must be left to comparison with physical experiments.
After all, both approaches ignore the vorticity due to
viscosity that is certainly there. Some approximation
schemes result in models with other blemishes. For
instance the Korteweg-DeVries (KdV) and super KdV
models are not Gallilean invariant.

3. Waterfall problem

Consider the steady two-dimensional flow of an
incompressible, inviscid fluid under the action of grav-
ity over a cliff leading to a free overfall (as shown in
Fig. 1). Three distinct regions of flow may be associ-
ated with this problem. The upstream region (region I)
is characterized by a free top surface and an even bot-
tom. The middle region (Region II) is characterized by
a free top surface and an uneven bottom. For the study
here we shall restrict the unevenness to be a uniform
slope, although there is no limitation in the theory in
this regard. In the downstream region (labeled as III)
both the top and bottom surface of the fluid are free.
Far upstream the fluid is assumed to flow as a uniform
stream, while downstream the fluid falls freely under
the action of gravity. Of particular interest in analyzing
the problem is the prediction of the height of the whole
flow region and the determination of the downstream
solution, i.e., the shape of the free surfaces and the ver-
tical thickness of the jet.
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Green-Naghdi Theory Level-1

Here we use Green-Naghdi theory level-I with the
formulae and notations derived by J. Shields and W. Web-
ster (1988). We consider here only two-dimensional prob-
lems. The Level-I theory is summarized as follows:

The velocity profile (u,v) is assumed to be of the form:
ulx, z,6)=u, (x,1) )
v(x, z,t)= v, (x,t)+ v (x,t){.

The kinematic boundary conditions are:
v, tvia=a, +u,a,;

Vo +V B =P, +u,p,.

where B = f(x,t) and a=a(x,t) represent the top and
bottom surfaces respectively.

@

The continuity equation is

The momentum equations are as follows:
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~where P and ﬁ are the pressure on the top and bottom
surfaces respectively, and where
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Since P, only exists in the second equation of (4), it
_ is then only a dependent variable and need not be solved
simultaneously with the other variables.

Formulation of the problem

"A statement of the problem under consideration is
given in section 1 and for this study we consider only

steady flow. With reference to Figure 2, we choose the
x-y co-ordinate axes as shown in Figure 2: Region I is
the domain x < -a; Region Il is the domain -a <x <0
and Region Il is the domain x > 0. It follows that the
pressure p at the top surface equals the atmospheric
pressure p, in the whole region. The given quantities
and unknowns are as follows:
p=py,a=0
Region I (x < —a) {{’_ Po. @ }
P> B unknown,
P=Po, =Kx+Ka,
Region I (—a<x<£0) {I_) Pos a(x) “ }
D, p unknown
. ﬁ = Po> ﬁ =Dy
Region I (x>0
g ( ) {a, B unknown }
where K is the slope of the bottom in region II. After

Simplifying, we can obtain the governing equations for
three regions:
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where R, R,, R3, S; and S; are constants of integration,
which can be determined by boundary conditions and
matching conditions. @ is the total flow through any
section.

Boundary conditions

It is assumed in the statement of problem that far
upstream the fluid flows as a uniform stream. Then the
far upstream boundary conditions are as follows:

as x — —wo : @)

$, > Hyy $op >0, ug o1y, Py—LpgHl
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where the constants H,; and u,; denotes the depth and ve-
locity far upstream respectively.

As for the far downstream boundary conditions, we
follow Naghdi's assumption, i.e., far downstream the pres-
sure distribution (in the three-dimensional theory) is uni-
form throughout the thickness of the fluid sheet and is
equal to the atmospheric pressure p,. This assumption
leads to the following boundary conditions:
as x —» 4o ¥

¢, >Hy, @y >0, @pry >0, Py 50
where the constant vertical thickness H, of the fluid sheet

far downstream is to be determined in the course of solu-
tion.

Matching conditions

In order to obtain a solution which holds throughout
(—© <x <+®), the solutions in region I, Il and III must be
matched at x=-a and x=0. This matching is accomplished
by using the standard jump conditions associated with the
integral balance laws of the theory of a directed fluid
sheet. Assuming that the fluid flows smoothly at x=-a and
leaves the edge of the cliff smoothly at x=0, the
appropriate two-dimensional form of the jump conditions
for a fluid sheet of variable initial depth may be written as:

[t =0 [g]__, =
[¢0"]Ix=~a =-K; [PO]Ix=-a =0
and

[uo¢o}lx=0 =0; [¢o]| =0 — 0;
[¢ox]|x=0 =0, [P"]lx=0 =0

where the notation [f] stands for

[f]lx ___fx+ __fx— .

&)

Results

Unfortunately, to date we have not been able to find
experimental data for comparison with this development.
Naghdi and Rubin (1981) using different (but equivalent)
form of the Green-Naghdi method analyzed the waterfall
springing from the flow over a flat bottom. For this case
there are some experimental results from Rouse (1936).
Figure 2 shows our calculated profile for this special case
for Fr = 2.0, and H; = 0.9201 meter. The shape and
particularly the value of H; = 0.8889 meter (at x = 0) agree
extremely well with the experiments.

Several cases with sloped bottoms have been calcu-
lated. The upstream height H, = 1 meter. Figure 3 shows
the flow profiles of fluid sheet with different upstream
Froude Number (Fr=1.25, 1.5, 2.5 and even 8.0) for a
bottom slope K =0.1.

4. Future Research

Progress is now. being made on performing similar
calculations using GN Level II theory where the kine-
matic model for the vertical variation in velocity
involves an additional term in both the horizontal and
vertical velocities. That is, for Level II, the kinematic
approximation corresponding to (1) is

u(x, z,t)= u, (x, t) + 1 (x,t){

Wx,z,t) = vo(x,t)+ w(x.0) ¢ + vy(x,t) 2
With this kinematic model it is possible to treat the

flow over a weir (Figure 4). In particular, it is possible

to model the jet streaming vertically from the gate of
the weir.
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Relation to Plunging Breakers

Consider the flow in a wave approaching a beach
and experiencing the effects of shoaling. At any instant
of its evolution, a stagnation streamline separates the
flow downstream of the crest (i.e., towards the beach)
from that upstream (towards the ocean). Before the
wave breaks this streamline terminates at the crest.
However, as the wave begins to break, this streamline
bends over and a jet is formed creating the plunging
part of the breaker. The upstream flow including the
jet is not unlike the unsteady flow over a weir as
sketched in Figure 5. Use of the GN method to model
this evolution would require treating the downstream
(beachside) flow as a separate fluid sheet with appro-
priate matching conditions. Further, such a model
would also require some treatment of the impact of the
jet with the water in the downstream sheet. This proc-
ess is clearly non-conservative and would take some
care to develop.
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Figure 4. Schematic of Flow over a Weir
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Figure 5. Schematic of Plunging Breaker Flow




