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ON THE VALIDITY OF MULTIPOLE EXPAN SIONS
by
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1 Introduction

The Method of Multipoles is an effective method for solving certain scattering problems in linear wave
theory. particularly those involving immersed and submerged circles (in two dimensions) and spheres (in
three dimensions). An example is the submerged sphere between parallel walls which has been treated
by G.X.Wu and for which an alternative treatment was suggested by me at the last Workshop. During
the discussion David Evans raised the following question : Can the potential always be expressed as the
sum of the appropriate multipoles ? For the proof we need to find good bounds for the image potentials
and there is no simple method for this. In the present note I shall show that there is a simple argument
for two dimensions. and a more complicated argument for three dimensions. I have no serious doubts
about the validity of multipole expansions, ( including the expansions in Wu’s problem, ) but it is curious
that the mathematical arguments are not more obvious.

2 The circle

We consider first the classical problem of the submerged circle in two dimensions. The velocity potential
o(r.y)e " is defined in the part of the region (—oo < z < 00, 0 < y < o0) outside the circle

24y - f)F =d,

where a < f , and satisfies Laplace’s equation

8* o2
—t — z,y)=0. 2.1
The free-surface condition is 3
Ko+ 22 —0ony =0, (2:2)
dy
where K = «?/g. On the circle the normal velocity is prescribed,
99 = U(9). (2.3)
Jr

where r = rsinf. y = f+rcos@. Actually this boundary condition is not used in the following argument.
There is also a radiation condition: at 2 = too the waves travel outwards.

Clearly U'(8) is the sum of an even and an odd function of §. We shall assume that U(6) is an even
function. an analogous theory can evidently be given for odd functions. For the sake of simplicity we
shall -also assume that ff" U(8) df = 0. (When this last condition is not satisfied a wave source

1, 22+ (y—f)>? ® kgt . dk
Go(.l‘.y) = 51()g;-—2—1—(m - 2/(; € y cos kz F— K (24)

must be added.) There is one obvious method: According to Green’s theorem, the potential can be
expressed as a distribution of wave sources and wave dipoles over the submerged circle (or sphere) . It
is therefore sufficient to show that wave sources or dipoles can be expressed as a series of multipoles at
the centre of the circle. This construction has been carried out for a half-immersed circle in [Ursell 1981}
but the argument is elaborate. Here a much simpler argument will be given. We assume that a solution
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o(z.y) exists, and we wish to show that this potential can be expressed as the sum of multipoles at the
centre of the circle, which (as is well known, see [Ursell 1950], ) are of the form

oy cosmd (4" f* L kR
Gmlz,y) = o (m—-l)!/o k h—-K

e K+ cos ke dkym =1,2,3, - - (2.5)

where the contour of integration passes below k& = K to satisfy the radiation condition. Note that the
integrand in (2.5) is a solution of Laplace’s equation.

PROOF: It is well known that. if the potential exists, it can be expanded in the annulusa < r < f
as a Laurent series of the form

olr,y) = Z cosmé <p,,,i—m + gm —;,—"—;) (2.6)

1

where the series
0 am
E cosmb p,, —
rm
1

converges when a < r < o0, and the series

o0

> cosmd an
cosmb ¢ ——
fm

1

converges when 0 < r < f , actually when 0 < r < 2a — f. In particular, we have a bound
lpm| < M(a')(a"/a)™

for any a' > a. Now consider the expression
’ o0
®(z,y) = Y _ Pma"Cm(z,y), (2.7)
1

where the coefficients p,, are the same as in (2.6) We shall show that this expression is a uniformly
convergent series and thus defines a potential everywhere in the field of flow . For this purpose we find
bounds for the image potentials

p— m s <
(( 1)15;/ gt :'*‘II; e *+h) cos kz dk, (2.8)
m— 1) Jg -

where, as before, the contour of integration passes below the pole k = K. (It is this pole in the integrand
which complicates the mathematical argument. ) In (2.8) we write

ol i, 1 ik
coskr = 3¢ + 3¢ . (2.9)
Then
/°° gt K H K ke iklel g = /“e“p(m) =t B K bt gible g (2.10)
s . k-K A k- K
+ amiKme KythiKlzl (2.11)
= I(m,+) +4miK™ e KtDiKlzl oy (2.12)

where the term (2.11) is the residue at the pole k = K and where the acute angle n will be defined
later: see(2.17) below. Note that the integrands in (2.10) and the term (2.11) are solutions of Laplace’s
equation. Similarly

il

/oo pm-l k+ K ekt ~iklz| g
0

oo exp(~—in) k+ K .
m~1 —k(y+£) o —iklel gp (2.13
k- K /0 S ‘ (213)

]

I(m,—), say. (2.14)
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In (2.10) we write k = o€’ and note that |exp(ik]z|)| < |exp(—ic|z|cosy)| < 1, and that

o' + K
oell — I{

< cot(n/2).

Then

o o}

T4l < [ o™ cottn/2) expl=oty + f)cosn) do = (= DH0/2)
0

(y+ fymcosmn °

with the same bound for [I(m,~)|. Thus the contribution of this part of the image potential to the
series (2.7) is bounded by

(2.15)

(a')™ cot(n/2)

= e (|I(m. I(m,— M(d' E —_— 2.1
3 2 (i (0D Tm o)) < MU 32 02 per Gt (218)
and this series converges uniformly for all y > 0, provided that
cosn > d'/f, (2.17)

i.e. provided that the angle  is small enough. Now consider the contribution to ®(z, y) from the terms
(2.11) . This is bounded by the series

K

rm —~K(y+f) I~K( — (Ka')" :
K™ KO+HD « onM(d' )e K¥tDH Z Y] (2.18)

IPm| a™.2r. ’
— IV
1 (m —1)!

1
{m —1)!

m= m=1

a convergent series. Thus (2.7) defines a potential in the whole field of flow.

Consider now the difference potential

¢($, y) - ‘D(I. y)

which is defined in the whole field of flow . In the annulus @ < r < f the Laurent expansion contains
no negative powers ( since the coefficients pp, in (2.6) and (2.7) are identical), and ¢ — @ is thus defined
in the whole of the half-plane (—oo < z < 00, 0 < y < 00), including the interior of the circle. By a
well-known uniqueness theorem it follows that

¢—®=Ae " cosKz,

and this satisfies the radiation condition only if A = 0. This completes the proof of the expansion theo-
rem.

We have now shown that any solution of our boundary value problem must have the form (2.7). To show
that a solution actually exists we expand the terms in (2.7) in polar coordinates and apply the boundary
condition (2.3). An infinite system of equations is obtained for the unknowns p, see e.g. [Ursell 1950].

3 The sphere

We may now attempt the same method for the submerged sphere, but this leads to unexpected difficulties.
Only a brief outline can be given. Let the velocity potential be denoted by ¢(z,y, z), and let us assume,
for the sake of simplicity. that ¢ is an even function of z. We write ¢ =rsinfcosa, y = f+rcosd, z =
rsin@sina . The boundary condition (2.3) is replaced by

g% =U(8,a) = %UO(G) + Y Un(8) cosma. (3.1)

m=1
Then the typical multipole potential can be shown to be

m _1\n o0 - .
G = E)—'—'—(—C—Eiﬁ cos ma + (=) k+ A khe kWD g (kp) dk cosma. (3.2)
" rrtl (n—-m) J, k—-K
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We must find a bound for the image potential

(-1 [“k+K
(n=s)Jo k- I'

k"e~ 0+ g (kp) dk cos sa, (3.3)
which zippears in (3.2). The obvious analogue to (2.9) is the decomposition

T(ke) = 5 (HO (ko) + HP(hp) (34)

but for s > 1 this evidently leads to integrals which are divergent at k = 0, é.nd the earlier method is no
longer applicable. Instead, in the upper-half k-plane we use the function y (Z ) defined by

X2y = 2 [ explizZsino —isv) do = 12) - iB2), (3.5)
0
where E,(Z) is H.F Weber's function ({Watson 1922}, ch.10). Then, when Y > 0,
XX +iY) < = / |exp((iX — Y)sinv —isv)| dv = -3;/ exp(—Y sinv) dv < 1, (3.6)
0

and it is not difficult to show that x{”(Z) ~ const. ¢'Z/Z!/? when Z — o in the upper-half Z-plane.
Similarly in the lower-half Z-plane we use the conjugate function

™
x?(Z) = -—/ exp(—iZ sinv + isv) dv = J,(Z) + iE.(Z). (3.7)
0
It follows that
o0
k4K e KN ], (kp) dik (3.8)
0 k - I\
1 feeelin gy KLy 1 feoexe(=in) b4 K
- = P pn~k(y+ ) (D1 AR n o —k(y+f),(2)
2/; Ic—~Kke X5 (kp)dk-{-Q/ k—Kk Xy (kp) dk
(3.9)
+ 2miK" e~ KN\ (K p), (3.10)

and the convergence of the resulting series for the potential can now be shown as for (2.7) above. Note,
however, that products like

e~ N YW (kp) cos sa (3.11)

are not. solutions of Laplace’s equation.

Another obvious approach is by means of Poisson’s Integral which expresses the values of a poten-
tial inside a sphere as an integral over the values on the surface on the sphere. (An analogous argument
was used in [Ursell 1950].) The bounds for derivatives which I have obtained by this method are adequate
only when the radius of the sphere is sufficiently small and not for all values of a < f.
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