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INTRODUCTION

Over the past several years, a multipole-accelerated,
desingularized boundary integral method has been
developed to compute fully nonlinear water waves in
the time domain (Scorpio and Beck, 1996). The
method---denominated UM-DELTA, for University of
Michigan Desingularized Euler-Lagrange
Time-Domain  Approach---has been  successfully
applied to a wide variety of problems, with marked
improvements over results obtained using linearized
methods. A major difficulty is encountered, though, by
this and similar methods for computing nonlinear water
waves and wave loads: the characteristic occurrence of
spray and wave-breaking in free-surface flows causes
the computations to stop, as figure 1 demonstrates.
Therefore, for the present method to realize its full
capability, it is important to-prevent the generation of
spray and breaking waves from terminating the
simulations of highly nonlinear flows. However, with
the goal being for the method to remain efficient and
useful in the marine design process, a detailed and
expensive simulation of the wave-breaking event itself
is less desirable an approach than one that models the
event adequately enough for the -calculations to
proceed.

To this end, recognizing that wave-breaking is
essentially a process with which is associated a local
dissipation of energy, a technique is herein proposed to
absorb energy locally from waves that are about to
break, thereby suppressing wave-breaking. The

- features of this "local absorbing patch" model are: (i)
detecting the likely occurrence of wave-breaking, and
(ii) determining the appropriate amount of local
damping so as to render reasonably realistic waves in
the post-breaking regime; these are discussed below.

CRITERION FOR BREAKING

Important as the problem is, wave-breaking has
received considerable attention, but it is not yet
completely understood. A survey of the literature
reveals that a number of studies have been conducted to
understand why waves break and to determine a reliable
criterion for the inception of breaking. For brevity, we
cite only Griffin et al. (1994) for they point to the
pertinent references in their review of the existing
criteria.

Following Stokes’ theorizing of a limiting
height (H) to a wave in terms of the wavelength (A), the

wave steepness (often measured by ak, where a is the
wave amplitude and k=2m/A is the wave number) has
been the most commonly examined index for
wave-breaking. Empirical data, however, show the
steepness to be an imprecise criterion---see figure 1 and
table 1 of Griffin et al., 1994, which indicate that waves
break at lower steepnesses than that suggested by
Stokes’ criterion and also show the scatter in the data.
Another widely pursued idea has been the prescribing
of a limiting value to the fluid velocity at a crest. For
example, recently, Wang et al. (1994) provided data
obtained from a two-dimensional numerical wave tank
in support of the criterion that a wave breaks when the
horizontal particle velocity reaches the local group
velocity. The possibility of breaking has also been
related to the energy content in the waves, by others,
but these last two criteria are difficult to extend to
three-dimensional flows. Criteria based on the wave
slope and accelerations of the free-surface have also
been suggested, but the consensus is that none of the
above constitutes a simple, precise, and universally
valid criterion.

In this light, we pursue a criterion based on the
wave steepness because of its simplicity and its
applicability in three-dimension. A steepness criterion
that requires an estimate of the local wavelength,
however, is not easy to implement, especially when
waves of different frequencies are present and interact.

‘We exploit instead that when waves break---or are

about to---they attain a profile with a sharp crest of
infinite curvature (k). Furthermore, empirical studies
of steep but non-breaking regular waves indicate that
waves that do not possess a sharp crest obey the
approximate non-dimensional bound, | kA |< 6. Figure
2 depicts how this applies to waves of steepness,
H/A = 1/12, whose leading front went on to break. We
therefore seek to use the exceeding of this bound---as
when any wave steepens to a sharp crest---as a "trigger”
for the activation of a localized wave damper in the
fully nonlinear computations.

To implement the idea, we then proceed to
reformulate the steepness criterion in terms of a
limiting value of xa: Adopting the approximate
criterion that a wave breaks when its steepness, H/A
exceeds 1/12 and using the above bound on lerl, we
obtain the condition, | xH | < 0.5 for a wave not to
break. We convert this into one based on xa since the
crest-to-trough wave-height is not as easily available;
we do so on the basis of the observable geometric
property of incipient breaking waves that a = 0.7 H on
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an average (e.g., Bonmarin, 1989), obtaining, finally,
| ka |<0.35.

In order to examine the reliability of this
curvature-based criterion, regular, deep-water gravity
waves of varying steepnesses (as generated in a
two-dimensional wave tank by a wedge wave-maker)
were simulated, and the variation of | ka | with the
steepness, ak was noted. (Note that, in the evaluation
of the abscissas, the nominal wavelength given by

2

k = /g was used.) This variation is depicted in figure
3; for comparison, that for a second-order Stokes wave
is also presented. For all waves of steepness, ak less
than about 0.25, the prescribed threshold value of | ka |
= 0.35 is never exceeded. For higher ak, this limit is
exceeded at times by waves that attain a sharp crest,
especially at the leading wave front. Not all waves that
do so go on to break; therefore, the present threshold
poses a conservative, if imprecise limit. However, a
conservative criterion is necessary to ensure that all
likely instances of breaking are detected so that they
may be suppressed.

Although some of the scatter in the data in -

figure 3 is due to the non-uniformities in fully nonlinear
waveforms, it is largely due to the inevitable noise in
the numerical evaluation of the curvature. We compute
the curvature using a local three-point formula arising
from the fitting of a circle through three consecutive
free-surface nodes---a formula that does give agreeable
results with the analytically obtained curvatures for
smoother profiles. Nonetheless, this scatter does not
appear to affect the nature of the | ka l-ak curve or the

limiting | xa |value considerably.

Finally, the sensitivity of the curvature
computations to the fineness of the node distribution
was studied through a convergence study: The
curvature of the free-surface was computed for one
particular case of wave-maker motion amplitude and
frequency (the resulting waves had a steepness of about
ak=0.21) using three different node distributions---25,
50, and 100 nodes per wavelength (the usual
distribution adopted---the minimum recommended---is
30 nodes per wavelength; the results presented in
figures 2 and 3 were obtained using 40 nodes per
wavelength). A sample comparison of the results is
presented in figure 4. Notice that although there is a lot
more noise in the calculations as the node density
increases, the important maximum values of the
curvature do not change much between the three cases.

Thus, we have arrived at a curvature-based
criterion for breaking that is simple and easy to
implement, even when waves of different frequencies
are present. The mechanism by which energy is
absorbed locally from the waves when this criterion is
met is discussed in the next section.

SUPPRESSION OF A BREAKING WAVE

We employ a variation of the numerical absorbing
beach used by Cao et al. (1993), in order to suppress
wave-breaking locally; the basic idea, though, is the
same---it consists of exerting an additional, external
pressure on the wave in the vicinity of the location
where the likelihood of wave-breaking has been
detected. By causing the wave to work against this
external pressure, the energy necessary to prevent the
wave from breaking is extracted locally from the fluid
(hence, "local absorbing patch"). Mathematically, this

consists of the inclusion of an additional term, P jomps N
the dynamic free-surface boundary condition:

o 1
—;{1+E\7¢.V¢+§+gz+

Note that P,,, is non-existent outside the

absorbing patch; within the patch, we prescribe the
following form to the damping term:

Pdamp

=0,

Py = G V(X) | Vo sgn(g—¢)

n

The |Vtt)|2 term determines the magnitude of the
damping; ¢ is a coefficient that may be varied to
increase or decrease the amount of damping; the
signum function ensures that the pressure is acting
against the wave; and v(x) is a shape function chosen to
ensure that the damper takes the form of a smoothly
varying patch:

(x-x,)
v(x) =0.5 1+cos( T )

o

Here, X, is the location where | ka |= 0.35 is exceeded ,
and L, is half the length, centered about X,, over which
the damper acts. We prescribe L, to be 2,/0.35 (a, is the

wave amplitude at X )---again, from considerations of

the geometry of breaking waves, so that the energy is
extracted from approximately the portion of the wave
between zero-crossings.

RESULTS

The effectiveness of the present "local absorbing patch”
model is demonstrated by application to the breaking
wave encountered in figure 1. As shown in figure §,
the wave-breaking is successfully detected and
suppressed sufficiently for the calculations to proceed.
The strength of the damping constant used was 6=12.5.
An uncertainty with the present model, however, is that
the amount of damping required to suppress
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wave-breaking is not easily determined---some other
calculations have required larger values of ¢ (of about
25) to suppress the wave-breaking. Moreover, it may
well be that for extreme cases suppressing the tendency
of waves to break while obtaining reasonable results in
the post-breaking regime is an impossible task. These
call for additional investigations.

The effects of prescribing a ¢ greater than that
which is necessary to suppress the breaking may be
small, as the results plotted in figure 6 suggest.
Therein, a comparison is made of the calculations
presented in figures 1 and 5 and an additional
calculation obtained using damping equivalent to 0=25.
Not only does the plot clearly show the difference in
the wave profile due to the extraction of the energy
associated with the breaking, but also, the difference in
the calculations obtained with the two different
damping strengths is imperceptible. This is due to the
feature of the model that damping is present only when
triggered by high values of lxal ¢ xal greater than
0.35) and only as long as | xa | is above the threshold
value.

The present model therefore holds much
promise for extending fully nonlinear water wave
computations into the important highly nonlinear
regime. An important step involves the validation of
the post-breaking calculations against experimental
data, which we are currently seeking. Efforts are also
underway to develop a strategy for extending the model
to three-dimensional flow computations. A proposed
approach, especially for ship-flow calculations, is to
detect the occurrence of and suppress wave-breaking
along prescribed free-surface paths (these are the paths
on which the Lagrangian nodes are convected in the
UM-DELTA method; they generally take the
appearance of free-surface streamlines).

Future work will involve the extensive testing
of the model over a wide variety of breaking wave
conditions. We also plan to compute the total energy in
the fluid domain and the fraction of the total energy that
is absorbed by the wave damper. We hope to relate the
computed energy losses to the numerous experimental
studies of wave-breaking.

ACKNOWLEDGEMENTS

This research was funded by the Office of Naval
Research and the University of Michigan--Sea
Grant--Industry Consortium on Offshore Engineering.
The computations were supported by allocations of
high performance computing resources through the U.S.
Department of Defense High Performance Computing
Modernization Program and the National Partnership
for Advanced Computational Infrastructure. We thank
Mr. Eirik Malthe-Sorenssen for his assistance with
some of the calculations.

REFERENCES

Bonmarin, P., "Geometric Properties of Deep-Water
Breaking Waves,"” Journal of Fluid Mechanics, Vol.
209, 1989, pp. 405-433.

Cao, Y., Beck, R.F,, and Schultz, W.W., "An Absorbing
Beach for Numerical Simulations of Nonlinear Waves
in a Wave Tank," Proceedings, Eighth International
Workshop on Water Waves and Floating Bodies,
Newfoundland, Canada, 1993.

Griffin, O., Peltzer, R., Wang, H., and Schultz, W.,
"Kinematic and Dynamic Evolution of Deep Water
Breaking Waves," Proceedings, Twentieth Symposium
on Naval Hydrodynamics, Santa Barbara, U.S.A., 1994.

Scorpio, S.M. and Beck, R.F., "A Multipole Accelerated
Desingularized Method for Computing Nonlinear Wave
Forces on Bodies," Proceedings, Fifteenth Offshore

Mechanics and Arctic Engineering Conference,
Florence, Italy, 1996; also, to appear in the Journal of
ffshore Mechanics and Arctic Engineering.

Wang, P., Yao, Y., and Tulin, M.P., "Wave Group
Evolution, Wave Deformation, and Breaking:
Simulation Using LONGTANK, a Numerical Wave
Tank," International Journal of Offshore and Polar
Engineering, Vol. 4, No. 2, 1994




142 Abstracts: 13th International Workshop on Water Waves and Floating Bodies

Direction of wave
propagation

::
N\
(1 | S m—— — N

0.1 r

e 1.2

Wave elevation

Distance along tank

Figure 1. Time-history of the surface displacement in
a numerical simulation, using UM-DELTA, of shallow-

water waves generated by a piston wave-maker in a two-

dimensional wave-tank. The calculations cease at about
t=11.4 due to the occurrence of a breaking wave caused
by the coalescing of waves of different frequencies.
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Figure 2. A representative snapshot at t=18.8 of:

(a) the surface displacement, and (b) the curvature of
the surface, for waves as generated by a wedge wave-
maker of motion amplitude 0.12m and frequency
0.559Hz (nomimal A=5m). The leading wave front
broke at about t=23.3 in this simulation. Note that for
the other wave crests, | kA| < 6, approximately.
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Figure 3. Observed variation with wave steepness, ak,
of the proposed wave-breaking index, lcal, for
regular, deep-water gravity waves. The variation for
a 2™ order Stokes wave is presented for comparison.
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Figure 4. A representative snapshot of the computed
curvature of the surface (for waves generated by a wedge
wave-maker of motion amplitude 0.08m and frequency
0.559Hz), using: (a) 100 nodes per wavelength, (b) 50
nodes per wavelength, and (c) 25 nodes per wavelength.
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Figure 5. Time-history of the surface displacement in a
repeat of the numerical simulation shown in figure 1, but
differing (only) in that a "local absorbing patch” model
has been implemented. The model detects the likely
occurrence of and suppresses the wave-breaking.
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Figure 6. Time-history of the surface displacement
in simulations involving: no damping (solid line);

. damping with 0=12.5 (dashed line); and damping

with 0=25 (dotted line).




