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A procedure to remove secularity in third-order numerical wave tanks

B. Molin, ESIM & Y. Stassen, Ifremer

Introduction

Many 2D numerical wave tanks have been developed worldwide. Most of them tackle the fully

nonlinear problem, but some are based on the Stokes expansion procedure ® = ¢ ®(1) 4 ¢2 (2) 4
.., and are restricted to first (linear) or second-order effects. At the eleventh Workshop in

Hamburg Biichmann presented a code with a third-order extension (Biichmann, 96). A similar

model has been developed more recently by Stassen (Stassen et al, 1998).

In Biichmann and Stassen’s codes successive boundary value problems are solved at orders

1 = 1,2,3, with the free surface conditions given as (at y = 0)

o) 4 gyg® = O (1)
nt(z)_q)!(;) = p (2)

where f() and h) are zero at order i = 1 and depend on the solution(s) obtained at the pre-
vious order(s) for ¢ = 2, 3. '

When a regular wave is being produced in the numerical tank, a problem that has been ob-
served is that the third-order component to the wave elevation, associated with ®©) tends
to increase steadily in amplitude as the wave travels down the tank. As a result when
n = enM +e2n? 4 3y is being recomposed at a finite value of ¢ (for comparison with exper-
imental results for instance), the third-order term €3%(® gradually overruns the second-order
and first-order ones, invalidating the perturbation procedure. This is illustrated in figure 2.

This phenomenon is due to secularity. In the frequency domain the remedy is well known and
consists in slightly modifying the wave number, the frequency being imposed by the wave maker
motion. In deep water regular waves the wave number correction is simply Ak = —e? k, k being
the wave number w?/g.

In the time domain, with the wave front gradually advancing over still water (and the generated
waves not necessarily being regular), a different procedure must be sought for. A possible one
consists in stretching the coordinate system, as is proposed below.

Theory

We consider two coordinate systems (z,y) and (X,Y), (z,y) corresponding to the physical
domain, and (X,Y’) to the computational domain. Both are centered at the free surface wave
maker intersection.

The mapping between the computational domain and the physical domain is given by

z = X+&P(X,Y,t) (3)
= Y+&Q(X,Y,1) | o 4)
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with the following restrictions on P and Q:

VP =0(1) vQ = 0(1) P(,Y,t)=0  Q(0,0,t)=0  kQ(X,0,t) = O(1)

k P(X,Y,t) being unrestricted.

For the sake of conveniency we will also assume that the waterdepth A is rather shallow, or
kQ(X,—h,t) = O(1), but the problem can be worked out without this assumption. (As a
matter of fact it is even simpler when the waterdepth is infinite).

As a result the boundaries of the physical domain correspond to the following curves in the
computational domain:

z=0  (wavemaker) — X =0
y=0  (free surface) — Y = —e2Q(X,0,1)
y = —h (bottom) =Y =—-h—-Q(X,~h,t)

bl b

The following step is to formulate the BVP satisfied by ®(z,y,t) in the computational domain
(X,Y"). Partial derivatives are transformed by

a 0 0
s = (=P o —@Qx 2 (5)
9 _ n_eond _2p 9
gy = I-e@rgp-ePryy (©)
9 & L, 8 L, 8 ]
5{ — E—C Pgé')—('—é Qté—i/— (()

the time derivative being the eulerian one, at = and y fixed.

At orders 1 and 2 the BVP’s are unchanged. At order 3 the Laplace equation for ®® is
maintained provided P and ) verify the Cauchy-Riemann conditions Px = Qy, Py = —Qy,
or P(X,Y,t) +1Q(X,Y,t) = f(X +iY,1).

The boundary conditions on the wave maker, bottom and free surface are transformed as follows.

Wave maker
For the sake of simplicity we assume the wave maker to be vertical at £ = 0. The no-flow
condition in the physical domain is of the type

03(0,y,t) = ¢®(y,1)

with ¢'® depending on the solutions at orders 1 and 2.
The condition in the computational domain is then

2R(0,Y,0) = g9(Y, 1) + Px 8% + Qx @) = g(¥; ) + Py 8% (®)

since @y =Py =0atax=X=0.

Bottom (y = —h)
Similarly the no-flow condition @gf')(w, —h,t) = 0 becomes

oY — Qv @) — Py 8y - QaY) =0

at Y = —h, or

o) = - (Q oY) (9)
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Free surface (y = 0)
The new conditions at Y = 0 are

<I>‘3’~Pt<1>fé’—Qt¢‘y"~Q¢§¢’+gn<3> = /9,1 (10)
) = Py — 8P + Qv el + B ol + Qo) = AO)(X,1) (11)

where (X, t) = enM(X,t) + (X, 1) + 5@ X, ).

Thanks to the free surface conditions verified by () and n), these two equations can be
rewritten as

5 B
p [@(3) _ pq)(l) _ (I,(l)] +g [77(3) - Png{l)] — f(3) (12)

P ,

o 1 = Po¥) - o [@‘3’ P8y —Qol)] = »® (13)

that is the same equations as in the secular case are obtained with ®©®)(z,0,¢) being replaced
by @3)(X,0,t) — P& — Q ®{" and n®(z, ) replaced by (X, t) — Pn(l).

This result would have been obtained readily if one had assumed both k P and k£ Q to be O(1)
at the free surface, through Taylor developments in X and Y. Actually only kQ = O(1) is
required (and to be checked later).

The procedure to get rid of secularity is now straight-forward. Be <I>(53) and ng?’) the (secular)
solutions obtained when P = Q = 0. Then ng’) contains a secular component at the same
spatial frequencies as n{*). This suggests to take P(X,0,t) equal to the slowly-varying part (in
X and t) of 17(3 / n(l). Then, hopefully, 7® will reduce to the expected small, high frequency
components.

Once P has been thus determined on the free surface, P and @ are obtained in the whole
computational domain through

™ (-2 ¢
with Z = X + 1Y and P(-(,0,t) = —P((,0,t). Then the modified boundary conditions, at

the wave maker and on the bottom, can be accounted for.

Figures 1 through 4 show some preliminary results relating to experiments carried out in the
towing tank of Ecole Centrale de Nantes. The length of the tank is 63 m, the waterdepth 2.8 m,
the wave perlod 2.1 s and the wave amplitude 0.12 m.

Figure 1, 2 and 3 show, 35 s after the wavemaker got started, values of 77x , (53) and —17(53) / nf\})
along the tank. Figure 4 shows, at different instants, values obtained for P at the free surface,
through low-pass filtering. All these results are dimensional, corresponding to € = ka = 0.11.
[t can be seen that P, which is nothing but the distance the first-order wave profile must be
shifted forward, slowly adjusts to the steady state solution P = k2a? X as the wave system gets
established in the tank.
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figure 1 : n(l )  along the tank at t=35 s.
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figure2: n S(3 ) along the tank at t=35 s.
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figure3: -m s(3)/r]” ) « along the tank at t=35 s.
The bold line shows results from low-pass filtering.

1 | I l I I
0.4_ ...................................................................................................
;é: 02 e e TN e N e SN N
2%
0 ..........................................................
_0 2 1 | i | i 1
0 10 20 x(m) 30 40 50 60

figure 4 : P obtained from low-pass filtering at t=30 s, t=35 s, 1=40 s and t=45 s.




