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On the completeness of eigenfunction expansions in water-wave problems

P. Mclver
Department of Mathematical Sciences, Loughborough University, UK

1 Introduction :

The method of eigenfunction expansions is a popular tool for the solution of the linear water-wave
problem in constant depth water. The key result is that there exists a complete set of orthonormal
vertical eigenfunctions so that any ‘reasonable’ function of the vertical coordinate may be expanded
in terms of this complete set. This result comes from the theory of sclf-adjoint linear differential
operators which is used extensively in many engineering applications of mathematics.

There are a number of problems involving wave interaction with a permeable breakwater or a
perforated barrier for which the vertical eigenvalue problem is no longer self adjoint. A consequence
of this is that the familiar theorems required to construct an eigenfunction expansion no longer
apply and the ‘obvious’ eigenfunctions may not form a complete set. Perhaps the simplest problem
of this type is examined in detail here, but first of all some aspects of the ‘standard’ water-wave
problem are recalled. )

2 The water-wave problem

Consider the linear water-wave problem for time-harmonic motion of angular frequency w in a region
of constant depth h, and let y be the vertical coordinate with origin in the free surface and directed
upwards. An attempt to find a solution in terms of vertical eigenfunctions leads to consideration of

the differential equation ,

d®)
sz—a§§=xx for —-h<y<0 (1)

together with the boundary conditions

d
3—;=0 on y=—h and d_Z=KX on y=0, (2)

where K is the real number w?/g and g is the acceleration due to gravity. It is well known that the
solutions of this problem are of the form

x = cosk(y + h) 3)
where k = \/2 is a root of the dispersion relation
K = —ktankh. (4)

This dispersion relation has two purely imaginary roots k = £ko and an infinity of purely real roots
{k = km;m =1,2,...}. The set of vertical eigenfunctions

Xm:f_‘?_s_k_'"_(}iiﬁ)_’ m=0,1,2,..., (5)
Np
with
1 sin 2k, h
2 _ 1 LA 6

form a complete orthonormal set satisfying

%[Oh Xm(y)Xn(y) dy = bmn (7)
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where 0,5, is the Kronecker delta.

It is convenient to introduce an inner product notation. Let u and v be any two functions that
are square-integrable over the depth and define their inner product by

o) =1 [ way (8)

—h

where the over bar denotes complex conjugate. In this notation, the orthogonality condition (M) is .

(Xm, Xn) = émn- (9)

By the expansion theorem, any function f that is square integrable over the depth may be written

o0
f=2{f;xm)xm- (10)
m=0
3 Wave motion in a permeable breakwater
A model for time-harmonic motion in a permeable breakwater! leads again to the consideration
of the boundary-value problem (1-2) but with K now a complex number. This problem has been
examined in some detail by Dalrymple, Losada & Martin?. In particular, they note that for certain
values of the complex parameter K there are double roots of the dispersion relation (4) and, for
these values of K, the eigenfunctions (5) no longer form a complete set. Dalrymple et al. obtain
the missing eigenfunctions by an indirect argument based on the Green’s function for the particular
water-wave problem under consideration. Here, the problem is re-examined from the point of view
of the general theory of non-self-adjoint linear differential operators.
An operator T is self adjoint if, for all suitable functions u and v,

(Tu,v) = (u, Tv). (11)

Integration by parts shows that this relation is satisfied by the operator defined by (1-2) provided
K is real. The corresponding breakwater problem, where K is complex, is not self adjoint and the
familiar expansion theorems do not apply.

Fortunately, this particular problem falls into a class discussed in Chapter 12 of the text by
Coddington & Levinson®. The eigenvalues of the problem (1-2) are given by A = k2, where k is a,
now complex, root of the dispersion relation (4). Let C, be a closed contour in the complex ) plane
which encircles in an anticlockwise direction the eigenvalues {1, Ag,..., A}, arranged in order of
increasing modulus. The expansion theorem? says that, for suitable functions f,

0
fly) = - lim f_ , Pn(ym) £ (n) dn (12)
where )
Paur) = 5 [ Gamnay (13

G is the Green’s function for the particular problem under consideration, and provided suitable
convergence criteria can be established. The Green’s function for the problem (1-2) is

_ (kcoskys + K sinky>) cosk(y< + h)
k(K cos kh + ksin kh) ’

Gly,mA) = k= A2, (14)

where
Y< = min(y,n) and y> = max(y,n). (15)
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This Green’s function has poles at values of A corresponding to the roots of the dispersion reiatlon
(4) so that, by the residue theorem,

Pa(y,n) = > Rm(y,m) (16)
m=1

where Ry, is the residue of G at A = Ap,. If the eigenvalues are known then the residues at the poles
of the Green’s function can be calculated and the form of the general expansion found. There are
two difficulties with this, one numerical and one theoretical.

The numerical difficulty is in locating the eigenvalues in the complex plane. In the case of real
K the roots of the dispersion relation lie on either the real or imaginary axis in the complex k plane
and are therefore easily located. For complex K, Dalymple et al.2 used a numerical scheme in which
the roots are tracked individually as the imaginary part of K is increased from zero. Some new
results have been obtained that should allow a more direct computation of these roots.

The theoretical problem is that for isolated values of K there is a double root of the disperion
relation and therefore a double pole of the Green’s function. These double roots correspond to zeros
in the complex k plane of the normalisation factor N, defined in equation (6); the corresponding
value of K follows from the dispersion relation (4). For almost all values of K there are no double
roots.

The residue of the Green’s function for a pole of order p,, at A = Ay, is readily evaluated and
may be written

Pm
R/m(yv 77) = Zam,pm——q-&—l(n)xmﬂ(y)' (17)
q=1

For the case of a simple pole, pym = 1, the so-called ‘generalised eigenfunctions’ are given by

cos km(y + h)

and Ym1 =Xm1 With (Xm,1,%m1) =1 (18)
Nm

Xm,1 =

For the case of a double pole, p,, = 2, the generalised eigenfunctions are

2coskm(y + h) -
Xm1 = ———m— and Ym1=Xm,1, (19)
Xm2 = §(4sin® kh — 3) coskm(y + h) + km(y + h)sinkm(y + h) and Pm2 = Xm.2, (20)
with
(Xm,1:¥m1) = (Xm2)¥m2) =0 and (Xm,1,¥m2) = (Xm,2:¥m,1) = 1. (21)

In the double-pole case, although the residue is well defined, there is a degree of arbitrariness
in the choice of the generalised eigenfunctions {Xm,g,¥mqiq = 1,2}. Generalised eigenfunctions
corresponding to different eigenvalues are biorthogonal so that

(Xm,qa Ynr) =0, m#Fn. (22)

With the above definitions, the general expansion theorem is

oo Pm

f= Z Z(f, Ym,pm—g+1)Xm.g (23)

m=1g=1

For real K, all poles of the Green’s function are simple and ¥m 1 = Xm,1 = Xm so that (23) reduces
to (10), after a suitable relabelling of the eigenfunctions.
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4 Solutions of Laplace’s equation
The expansion theorem (23) may be used to find solutions of water wave problems. For example,
suppose that a solution ¢(z,y) of Laplace’s equation is required satisfying the boundary condiitons

9¢ _ _ 9¢
?@—0 on y=-h and -a—y=K¢ on y=0. (24)

The solution is sought in the form

00 Pm

3 Y) = D Y Crmg(2)Xmq(¥) (25)

m=1g¢g=1

which satisfies the Laplace equation provided

o0 Pm
> 3 {Crg(@)Xma®) + Crmg(2)Xin,g(®)} = 0. (26)
m=1g=1
Now
Xm1 = —kmXm1 and  Xpo = —kZXm2 — k2 cos? kh xm,1 ) (27)

so that (22) may be used to isolate terms corresponding to distinct eigenvalues. For a simple pole
mi—kiCm1=0 andso Cmi1(z) = ame*™® +8, e e (28)

For a double pole, application of the biothogonality properties (21) yields

m2—knCm2=0 and Cp, —k2Cm1 = k?cos? kh Cp o (29)
which have solutions
Crm.2(Z) = Y €T 46, e Fm (30)
and
Crn1(T) = oy €5m% 4By, e T +1kz cos® kh ('ym ekm® _g . e"k"‘“’) . (31)

5 Conclusion

This work is concerned with a simple model for the propagation of water waves in a porous medium.
The model has been extended to a two-layer flow by Yu & Chwang? and the problem is again not
self adjoint. This modified problem involves additional matching conditions at an intermediate
depth and the theorems given by Coddington & Levinson3, and others, do not apply to this case.
Thus, it is not clear that the expansion theorem is valid even when there are no double roots of the
dispersion relation. This and other models are currently under further investigation.
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