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Introduction

For several years many authors tried to prove that the two-dimensional, linear water-wave
problem was uniquely posed at all frequencies until McIver (1996) showed that trapped
modes exist for pairs of special bodies placed in the free surface. Trapped modes are
defined to be non-zero solutions of the homogeneous problem which have finite energy.
Their existence at a specific frequency means that the forced problem does not have a
unique solution at that frequency. The question of whether or not trapped modes exist for
purely submerged bodies or variable sea-bed topography is still open. Uniqueness has been
proved for some geometrical configurations of bodies and topography (see McIver 1996 for
a review of the literature) but recently Evans & Porter (1998) showed that trapped modes
exist for submerged bodies in the presence of surface-piercing bodies.

Trapped modes are known to occur in other types of boundary value problems. A
classic example is the Stokes’ edge wave which is trapped above a sloping beach and
propagates along the shoreline. More recently Evans, Levitin & Vassiliev (1994) proved
that trapped modes exist when bodies are symmetrically placed in water wave channels
or guides. Unlike the modes found by McIver (1996), both of these types of trapped
modes occur at frequencies which are less than a ‘cut-off’ value, below which waves cannot
propagate to infinity. In the terminology of spectral theory, the trapped modes occur at
frequencies (‘eigenvalues’) which are below the bottom of the continuous spectrum for the
problem and they can be shown to exist with the use of a variational principle. However,
if there is no cut-off in the problem, the variational argument fails to prove the existence
of trapped modes and this is one reason why the two-dimensional water wave problem is
difficult to analyse.

The purpose of this work is to show how a cut-off may be artificially introduced into
the two-dimensional water-wave problem and how, for a wide class of bodies and variable
topography, uniqueness may be established below this cut-off. Work is currently in progress
to see whether trapped modes may be shown to exist below this cut-off and whether the
trapped mode found by Mclver (1996) is associated with a cut-off.

A cut-off frequency for the two-dimensional problem

The velocity potential which describes the two-dimensional, small oscillations of an inviscid
and incompressible fluid at angular frequency w is given by Re[¢(z,y)e *“*] where ¢
satisfies

V2¢ =0, in the fluid (1)
and )
d¢
— = =0. 2
Ko+ 3y Oony=0 (2)

Axes are chosen so that the origin is in the mean free surface and the y-axis points vertically
downwards and the parameter K = w?/g where g is the acceleration due to gravity. In
addition, no flow through any rigid surface means that

0

= 0 on the sea-bed and any bodies. ' (3)
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If trapped modes are sought then the radiation condition is replaced by
¢ — 0 as |z| — oo. _ (4)

Uniqueness is established if the only solution to (1)-(4) is the trivial solution ¢ = 0.
Without loss of generality, ¢ may be assumed to be real because if it were complex then the
real and imaginary parts would separately satisfy the governing equations and boundary
conditions. To be specific the problem in which there are no bodies in the fluid but there
is a variable sea-bed which lies between = = +a, as illustrated in figure 1, is studied.

Ko+ dy=0 :

v Y

V2¢=o

Figure 1 - Definition sketch and illustration of a nodal line

Greens theorem

oY ¢
2 — 2 prowed — e
/quv Y —yYVepdV /3D¢6n 6nds (5)
is applied to ¢ and the harmonic function
1 = sink(z — b) coshk(y — h) (6)

in the region £ > b > a, 0 < y < h, where h is the uniform depth of the layer in the region
z > a and kh is the real, positive root of the dispersion relation Kh = khtanhkh. In
this region, both ¢ and ¢ are harmonic and satisfy the same boundary conditions on the

sea-bed and the free surface. As ¢ — 0 as £ — 0o the only contribution to (5) comes from
the line z = b and yields

h
| 6.4) costky — hyay =o. )
0
The function cosh k(y — h) is strictly positive and as ¢(b,y) is a continuous function of y,

for some yo(b) such that 0 < yo < h. A value of yo may be found for every b > a and so by
continuity, there is a nodal line on which ¢ = 0 in the interior of the fluid which extends to

infinity in the region « > a. Moreover in = > a, ¢ may be represented by an eigenfunction
expansion, namely

oo .
b= ancoska(y - hle (= ©)

n=1
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where {k,h} is the monotonically increasing sequence of positive roots of the dispersion
relation Kh = —kphtank,h. If ¢ is not identically equal to zero then for z > a it is
dominated by the first non-zero term in this series, so for some J

¢ = a; cos k] (y _— h)e“kj($~a) + O(e-kj+1£c) as T — 00 (10)

and so there is a nodal line which asymptotes to the horizontal line y = d as z — 0o, where
kjd is the smallest root of the equation cosk;j(y — h) = 0. Furthermore, if the potential
does correspond to a trapped mode, the other end of this line cannot lie on the sea-bed or
go to either infinity. If it did then there would be a region in the fluid which was open to
infinity and partially surrounded by lines on which either ¢ or its normal derivative were
zero and a simple application of the divergence theorem would mean that ¢ = 0 everywhere
within that region and, by analytic continuation, ¢ = 0 everywhere in the fluid. Thus if
¢ represents a trapped mode there is a nodal line which asymptotes to the line y = d as
x — oo and whose other end lies on the free surface, as illustrated in figure 1. Although
the precise position of the line is unknown, it defines the lower boundary of a subregion
of the fluid contained between it and the free surface. In the next section it will be shown
that there is a cut-off for this new region, below which waves cannot propagate to infinity

and uniqueness will be established for Khpy,x < 1 where hpax is the maximum depth of
the fluid.

Uniqueness below the cut-off

The velocity potential for waves which propagate in a fluid layer of uniform depth d and
which satisfies the condition ¢ = 0 on the lower boundary, is given by

¢ = sinh k(y — d)e*®k=, (11)
where, to satisfy the free surface condition (2), kd is a root of the dispersion relation
Kd = kdcothkd. (12)

By examining the graph of y = zcothz it is straightforward to show that there are no
real roots of (12) if Kd < 1. Thus there is a cut-off frequency below which waves cannot
propagate in a uniform layer and satisfy ¢ = 0 on the lower boundary.

The region D is defined to be the region contained between the nodal line and the
free surface and the coordinate axes are redefined so that the origin is at the intersection
of the nodal line and the free surface. Integration down a vertical line from any point b on
the free surface of this new region gives

d(b) 6¢
86,0 =~ [ Sy, (13)
0 Y
where d(b) is the smallest value of y such that the point (b, d(b)) lies on the nodal line. (If

there is only one such value then y = d(b) is the equation of the nodal line.) By squaring
(13) and using the Cauchy-Schwarz inequality it may be shown that

' d(b) db) /5 2 d(b) 6¢> 2
2 - —
¢%(b,0) < [ /0 1 dy] [/0 ( ay) dy] < dmax /0 ( By dy, (14)
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where dpax is the maximum depth of the nodal line. An application of the divergence
theorem with the use of (4) and (14) gives

00 oo  pd(x) 6¢ 2
Vé):dV = K 2 — 2
/D (Vo) /0 #(2,0)dz < Kdma fo /0 ( ay) dydz < Kdpae /D (V$)* V.

(15)
If Kdmax < 1 the inequality in (15) is only satisfied if (V¢)? is identically equal to zero
which means that ¢ is a constant and this constant must be zero from the nodal line
condition. So there are no trapped modes in the subregion for Kdmax < 1. AS dmax < Rmax,
the maximum depth of the fluid, there are no trapped modes in the subregion and by
analytic continuation, the whole fluid, if Khpay < 1.

Uniqueness for bodies and variable topography

The analysis of the previous section may be extended to the case where there are a finite
number of nonbulbous, surface-piercing bodies in a fluid layer of variable depth. In this
case, the nodal line may end on one of the bodies instead of the free surface. However, the
nodal line and a portion of the body would still define the lower boundary of a subregion of
the fluid and if the body is nonbulbous, vertical lines may be extended from every point on
the free surface in the subregion to the nodal line and the analysis of the previous section
will apply. In addition the proof of uniqueness for Khpax < 1 extends to the case where
there is a single submerged or surface-piercing body of any shape. This is because there is
also a nodal line which asymptotes to the line y =const as z — —o0 and it is impossible for
both nodal lines to end on the body unless the potential is identically equal to zero. Thus,
at least one of the nodal lines must end on the free surface and this defines a subregion of
the fluid in which the argument of the previous section may be applied.

Conclusion

Uniqueness of potential for the two-dimensional, linear boundary value problem for water
waves has been proved for general sea-bed topographies for Khpyax < 1. The result has
also been extended to prove uniqueness for the same range of frequencies when there are
any finite number of nonbulbous, surface-piercing bodies in the fluid or a single submerged
or surface-piercing body of any shape. The numerical evidence is that the nodal line for the
trapped mode potential obtained by Mclver (1996) ends on one of the bodies. However,
because the bodies found are bulbous it is not possible to extend vertical lines from every
point on the free surface in the subregion to the nodal line and so there is no contradiction
between the existence of this mode and the uniqueness results generated in this paper.
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