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Introduction

There are two key ingredients to the derivations of the formulas in this paper. The first

is the observation that solutions to Poisson’s equation are related to solutions of the heat
equation. Thus if

Viu=f in (1)

and
Vi =y, in €, (2)
v=—f att=0, (3)

with u and v satisfying the same time-independent boundary conditions on 45, then

u=/0°°vdt, (4)

provided this integral exists.

The other important step in the derivations below is to find two complementary representa-
tions for v, v; and vy, the first of which is easy to calculate for small values of ¢, the latter
being easily evaluated for large t. We can then introduce an arbitrary positive parameter a
and hence obtain a one-parameter family of formulas for « in the form

u=/av1dt+/°°'v2dt. (5)
0 a -

These ideas were used by Strain (1992) to derive rapidly convergent series for the Green'’s
function associated with Laplace’s equation in an n-dimensional cube.

In this work we will apply these ideas in order to derive rapidly convergent expressions for
Green’s functions associated with water-wave problems in which the water depth is constant.
One consequence of the fact that the domain §2 is unbounded is that the integral in (4) does
not exist and the above procedure has to be modified slightly. Thus we choose # so that
J5° (v + ©) dt does exist. Then the value of this integral is u + & where

V2 = —f;|t=0. (6)

Provided we can solve this equation we then have

u=/°°(v+f))dt——ﬁ. | 1)
0
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New representations for free-surface Green’s functions

We will use the following definitions:

r=t+y?+ (2 -4 ' =[zt+y?+ (2h+ 2+ )2,
R=[+y"1'%  p=[+E-QU"? =+ @h+2+0)Y"
(1)—2nh ¢ — 2z, x$l2)-2nh——(+z,
x® =2mh +¢ - 2, x® =2nh+ ¢+ 2.

The exponential integral, E;(z), the incomplete Gamma function, I'(a, ) and the comple-
mentary error function erfc(z) will also be used.

Two dimensions

We consider the two-dimensional fluid domain —00 < z < 00, —h < z < 0 with the
undisturbed free surface being 2z = 0 so that the Green’s function representing an oscillating
point source at = 0, z = { is Re(G exp{—iwt}) where G is the solution to

V2,G = 6(z)é(z - ¢) —h<2z<0,-h<({<0, (8)
G, =KG on z =0, 9)
G,=0 on z = —h, (10)

and we require G to behave like outgoing waves as |z| — oo.

Numerous representations exist for this Green’s function. In particular we have the eigen-
function expansion

o {Z.: CoS fm(z + h) cos (¢ + h) e Hmlel,

(11)
m=0 2’“’"'Nm

where i, m > 1 are the positive solutions to pm tan pimh + K = 0, pg = —ip where p is the
positive root of ytanh ph = K and

h sin 2p,h
=—|14 ——]. 12

This series converges rapidly provided |z| is not too small.
Following the procedure outlined in the introduction we can derive the new representation

for G,

G=-

jeislzl XA
X cosh p(z + h) cosh u(¢ + h) — Z W os pm(2 + h) cos pm(¢ + h)

2UN0 m=0 (13)

1 P2 1 p/2 00
- =B (£5) - =B (L) - S (-1 L,
47rE1 (a2h2) 47rE1 (azh2 Z( )

n=1
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where a is an arbitrary positive parameter,
2p2/4 -z /4t 2
- _ - ok
Ao /0 e (14)

-—Zv?lﬁg%(%) [l I2n+1F( ) i (=1)mz?m ], 15)

L= ml(m — n — 1)(ah)2m-2n-1

I

00 —'I2/4t 9 ¢
Am =/ — o™ Hm
a2h2/4 (47rt)1/2 e dt (16)
1 (-1)" a:um> 1 p2 a?h?
= P2 —p Em® ™
iy, 7;) ( 2 "™ g ; (17)
2[4 o-?/4t
— (1) 4
Ln = ./(; (47rt)1/2 ( I (Xn-1) + In "(X(2)) + Inn(x (3)) + In.n(XS;ll)) di (18)

and I,n,(x) is a known function. If we set @ = 0 in (13) we recover the eigenfunction
expansion (11).

For large values of |z| the integrals Ay and A,, are best evaluated numerically, whereas
for small |z| the series representations can be used. The integrals L, must be evaluated
numerically but provided a is chosen small enough only L, is required. We note that

2h2/4 o—2%/4
/0 ‘(‘Wfl,l(X) dt =

1 z? 4+ X2 Ke Kx rah/2 K22 —z? 4u? X
- - —e? 4t rpe (X
47rE1 ( peyx =y fo e erfc (Zu Ku) du. (19)

Both the sums in (13) converge exponentially with the parameter a controlling the relative
rates of convergence of the two series. For a = 0 the eigenfunction expansion (11) is recovered.
The second sum in (13) is exponentially localized in space and so we can think of it as
representing local information whereas global low-frequency information is represented by
the first sum. This type of decomposition is known as Ewald summation.

Three dimensions

Next we consider the three-dimensional problem
V3G = §(x)6(y)6(z - () —h<2<0,-h< (<0 (20)

together with (9) and (10), and we require G to behave like outgoing waves as R — oo.
The eigenfunction expansion for G is

[0 ] K m
G=-) KolymR) COS fir (2 + h) €08 (¢ + h). (21)
o 2mNp
Computations by Newman (1985), (1992) show that when R/h > 1/2 this expansion is
sufficient. Our new representation for G is
, o A
G=- Z—Jl—v— M (LR) cosh pu(z + h) cosh (¢ + k) — Y =" c08 pm (2 + B) €08 pim (¢ + h)
0 m=0 m

L erfe (=) e (D) - S (22)
U\ Gh 4 U\ ah "

n=1
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where
a2h2/4 e'R2/4t
Ao=“-/o yyn et dt (23)
1 R & (-1)"/R\™ 1 &1 (uah\™" R?
= (7*2‘“;;#,,:1 o (an) “mlal\z) Belgm) @
A o0 e—Rz/4t Yy
" _/¢z2h2/4 4rt e dt (25)
1 & (_l)n R 2n ll'gnazh?
=EE§ n! (Zﬁ) E"“( 4 ) (26)
aZh?/4 g—R?/4t
Ln =/0 47t (I"'"(thl—)l) +In,n(X$;2)) + ln,ﬁ(XS;B)) + In.n(XSl-)H ) dt. (27)

If we set @ = 0 in (22) we recover the eigenfunction expansion (21). The logarithmic
singularity in Ag as R — 0 is, of course, exactly that required to cancel the singularity in the
Hankel function. Hence, by writing —iHél)(,uR) — 5= In R as a power series, (22) is easily
computed for small R.

For the evaluation of L; we note that

a2h2/4 e”'R2/4t
/0 Gt () dt =
‘ , 2, 2\1/2 ~KX  rah/2
- —-1—-—erfc (B +x) - Ke /a fCW B[4 e (_)_C_ - Ku) du. (28)
4y \ ah 2r  Jo 2u
Discussion

- New representations have been derived for the finite-depth free-surface Green’s function in
two and. three dimensions. These representations contain an arbitrary positive parameter a
which can be varied so as to achieve the optimum convergence rate for the given physical
parameters. Preliminary numerical calculations suggest that the method is very efficient.
Numerical results showing the relative strengths and weaknesses of these new formulas com-

- pared with- other techniques for. calculating these Green’s functions will be shown at the
workshop. '

The same techniques can be used to derive formulas for other Green’s functions associated
with water-wave problems and these will also be discussed.

- References

NEWMAN, J. N. (1985). Algorithms for the free-surface Green function. J. Engng. Math.,
19, 57-67.

NEWMAN, J. N. (1992). Approximation of free-surface Green functions. In P. A. Martin
and G. R. Wickham (Eds.), Wave Asymptotics. Cambridge University Press.

STRAIN, JOHN (1992). Fast potential theory. II. Layer potentials and discrete sums. J.
Comput. Phys., 99, 251-270.




