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Modeling of instabilities of oil containment systems by a vortex sheet method

Stéphan T. Grilli' and Zhimin Hu
Department of Ocean Engng., University of Rhode Island, Narragansett, RI 02881, USA.

Floating booms with a catenary shape are the classical means of oil spill containment in the
ocean or in rivers (Fig. 1). Due to the relative boom-water velocity U, oil is forced to accumulate
in the boom’s apex, as a gradually thickening slick; other equipments such as skimmers are then
used to pick-up the oil. In the ocean, for optimum efficiency of the clean-up process, U should
be as large as possible; various instabilities at the oil slick/water interface—both small and large
scale—however, put a low practical limit to this velocity at about U, ~ 0.5 m/s (see Grilli et al.
(1996) (GHS) for details and literature review).

Experiments have shown that such instabilities are triggered by small scale shear instabilities
at the oil/water interface, i.e., so-called Kelvin-Helmholtz (KH) instabilities (GHS) : beyond a
critical value, the KH instability growth rate increases as a function of U and the density ratio
© = po/pw (With p, the oil density and p,, the water density), and decreases with an increase in
oil/water interfacial tension 0. Increasing nonlinear effects, as interfacial KH waves develop
and roll-up, are expected to reduce the instability growth rate to some extent, but only a numerical
model can quantify these effects.

In this study, a vortex-sheet (VS) model of the fully nonlinear time evolution of KH instabil-
ities at the interface between two fluids is developed and applied to the oil-water-boom system. To
gain a better physical understanding of the effects of controlling parameters on nonlinear KH in-
stabilities, we first restricted our scope to the simplified case of spatially-periodic two-dimensional
KH instabilities. A periodic higher-order VS Boundary Element Model, combining the solution
of Biot-Savart (BS) equation and a time evolution equation for the interfacial vorticity, was devel-
oped. Details of model development, implementation, and validation can be found in Grilli and
Hu (1997). This model accurately predicts the fully-nonlinear growth rate of periodic interfacial
KH instabilities, including situations where intense roll-up of interfacial VSs occurs (Fig. 2).

The application of this model to non-periodic cases is considered in the present study. Fig.
3 shows a sketch for the computational domain for an oil-water-boom system, in a vertical plane
through the boom’s apex. The central region is discretized by higher-order VSs and the semi-
infinite regions before and beyond the boom, where the relative water velocity U is uniform, are
represented by semi-infinite VSs over which BS’s equations are analytically integrated. Fig. 4
shows a typical result obtained for a so-called headwave instability of the oil layer.

Details of the model equations, numerical implementation, and results will be presented and
discussed at the workshop.
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Figure 1: Floating booms used in oil containment systems : (a) towed boom in the ocean; (b) fixed
boom across a river. Relative oil-water velocity is U.
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Figure 2: Typical computational result for the periodic KH instability at the interface between two
fluids. a: initial sinusoidal perturbation; b: computational profile at some later time.
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Figure 3: Sketch of computational domain for the non-periodic model. si : semi-infinite VSs; ds :
discretized VSs.
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Figure 4: Typical computational result for the headwave instability of an oil slick contained by a
boom (non-dimensional lengths have been used). (—o—) initial discretized oil slick shape; (——)
computed oil slick shape at some later time.
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