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and of trapped modes
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1 Introduction

The motion of bodies piercing a free surface
in the presence of gravity usually leads to the
formation of waves on the surface, which prop-
agate away from the body. In this paper, we
explore within the framework of first order po-
tential flow theory, the existence of wave-free
two dimensional flows past surface piercing os-
cillating bodies. The shape of the body is found
by constructing a wave free potential which de-
cays to zero at infinity and interpreting some of
its streamlines as body boundaries. Two differ-
ent general techniques can be used to construct
such a potential. First, through phase cancel-
lation of the wave fields due to discrete singu-
larities with appropriate spacings. For exam-
ple, Mclver (1997) considers two sources sepa-
rated by half a critical wavelength. There ex-
ists then a relation between the characteristic
length of the body shape and the critical wave
frequency. The use of this method is thus limited
to higher frequencies. Another technique, intro-
duced by Tulin (1976, 1982) in connection with
ship waves, is based on the use of wave-free com-
pound singularities. It has been successfully ap-
plied in three-dimensions for the minimization of
ship wave resistance by Tulin & Oshri (1994). A
portion of Tulin’s results were re-discovered and
applied by Tuck (1992). In this paper, we apply
this technique to the seakeeping problem in or-
der to find shapes of bodies that do not generate
waves while oscillating at a given frequency. It is
also shown how body shapes that generate the so
called “trapped modes” can be derived using this
theory. Simple examples are considered here us-
ing a single wave-free compound singularity, but
results for singularity distributions, which can be
interpreted in terms of body volume and verti-

cal force distributions, can also be derived using
the same basic ideas. These results can also be
extended in three-dimensions as carried out by
Tulin in the case of bodies in uniform streams.

2  Wave-free compound
singularities

Figure 1: Geometric definitions.

We consider the two-dimensional case of a sur-
face piercing body oscillating with pulsation w in
heave, sway and roll (see. fig.1). The variables
are non-dimensionalized using 1/w as the time
scale and g/w? as the length scale, where g is the
acceleration due to gravity
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The complex potential
U =[p+id]et = [Th(2) + Ty(2) ] (2)

is considered as the sum of a hard singularity
system, ¥, generating only horizontal veloci-
ties on the free surface, and a soft system ¥,
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which generates only vertical velocities on the
free surface. W, and ¥ are defined so that!
[\Ph]y—o = J( [\I/h]y 0) = 0 and §R( [\I/ ] 0)
R([¥s]y=0) = 0. It follows that the complex po-
tential ¥ will satisty the linearized free surface
boundary condition

%([xp —i \I/]y=0)= 0 (3)

provided that R([¥) — i ¥{]y=0) = 0. This last
relation is verified by simply choosing

Uy =14 T, (4)

Finally, the compound singularity defined by
¥ = (U, + i¥,)e satisfies the free surface
boundary condition and is wave free. Simple
wave-free compound systems can be constructed
directly using soft systems based on standard sin-
gularities such as sources and vortices, centered
about a fixed point and its image (see Tulin,
1994). On the other hand, soft systems can be
obtained from the hard ones, and vice et versa,
by using (4). It can also be checked that if ¥, is
a soft system, then its derivatives also represent
soft systems. There is therefore a wide range of
possibilities for the choice of the wave-free po-
tential. Given the potential generated by a real
oscillating body, the body shape must be deter-
mined.

3 Generation of wave-free oscil-
lating bodies and of trapped
modes

We now look for body shapes that would gen-
erate, while oscillating, the wave-free flow de-
scribed by a given complex potential ¥. The os-
cillations of the body are given byV =g Vo Jwet
for heave, U = gUp/we for sway and Q =
wQp e for roll. Using 7 = f(@) as a parame-
terization for the shape of the body, the body
boundary condition is written as

8¢ =Ué +Vey+Qe x7) 7 (5)
on

where i = —€&, + 1/f - df /d0 €y is the normal to
the body. This leads to the following differential

'the notation ® and ' stands for real and imaginary
parts of a complex number. ¥ indicate a derivation of
analytic function ¥ with respect to the complex variable
Z=I+iy=rTe 0

equation for f

1df N(f,0
% = 509 ©)
where
N(7,0) = cos8(¢z — Uy + 7 sinf)  (7)
+sin0(q~53-, — Vo —7Q cos §),
and
D(7,0) = —sinb(¢z — Up +7sing) (8)

+cos€(q~517 — Vo — 7y cos ).

Families of body shapes that do not generate
waves at a given frequency while oscillating with
velocities Uy, Vg, Qg can therefore be constructed
by numerical integration of equation (6), start-
ing from different initial conditions. Of course in
our linear approximation, the amplitude of body
motion must remain small when compared to the
characteristic length describing the body shape.

On the other hand, bodies which would not
oscillate in the presence of an oscillating free sur-
face perturbation must obey the same differen-
tial equation (6) with Uy = Vy = Qg = 0, which
may also be recognized as the equation of stream
lines in polar coordinates. These bodies there-
fore generate the so called “trapped modes”. It
is therefore expected that resonance phenomena
occur while oscillating these bodies. This leads
to .non-uniqueness of the solution and infinite
added mass, Mclver (1997).

For the examples presented below, the integra-
tion has performed using a standard fourth order
Runge Kutta algorithm with adaptation of the
incremental step to the solution.

4 Simple examples

As an illustration of the previous ideas, we now
look for symmetric bodies that do not generate
waves while oscillating at a given frequency in
heave. The velocity field has to satisfy the sym-
metry condition ¢z (7,7 — 0) = —¢z (7,6) and
q~53; (F,r—6) = JJ,; (7,6) so that the shape of the
body obtained by integrating (6) remains sym-
metric. A simple wave-free compound singular-
ity centered at z = 0 which satisfies this condi-
tion is given by

xp=_a(%+-;2-)m(eif) 9)
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which leads for the free surface elevation 7 =
—asin(f)/2%. The oscillations of the body there-
fore generate an evanescent free surface deforma-
tion.

Considering a as a parameter, a family of flat
bottom bodies can be found (see fig. 2) starting
from initial conditions § = —7 /2, f = —, where
Jo is the only real root of equation —(Vy/a) §° +
g+ 2 =0 (a >0). Let us denote Z; the half
width of the flat body at the waterline. For each
value of o, two additional one parameter families
can be obtained, starting from initial conditions
8 =0, f = fo. For fo > Zo, body shapes are
wine glass like and extend down to —oo (see fig.
3) while for fy < Zg, twin hull closed bodies are
obtained. For the resonant problem, a family of
twin hull bodies is obtained (fig. 4).

We now consider the case of a forced roll mo-
tion, i.e. Uy = Vo = 0. In order to respect the
symmetry condition, the velocity field has to sat-
isfy ¢z (7, m — 0) = ¢ (7,0) and by (Fym — ) =
—-q;_g (7,8). A simple wave-free compound singu-
larity centered at z = 0 satisfying this condition
is given by

¥ = a(—;— - -;5) ® (") (10)

Starting the integration of eq. (6) from 6 = 0,
f = fo leads to the definition of two families of
bodies (see fig. 5 and 6). For large values of
fo, bodies are very close to circular since eq. (6)
leads to df /d8 = 0 as r goes to infinity. For small
values of fy a family of twin hull bodies is found.
The resonant problem also leads to a family of
twin hull bodies (fig. 7).

5 Summary & conclusions

A method is presented using compound wave-
free singularities for the determination of families
of two dimensional body shapes that do not pro-
duce waves while oscillating at a given frequency
in heave, sway or roll. Body shapes that gener-
ate trapped modes are also derived. Examples
are given showing that a wide range of shapes
can be generated even with a simple singularity
system.

In view of the Haskind formula relating ra-

diation damping and wave exitation, Newman
(1977), bodies which are wave free when oscil-
lated will be force free in the same mode when

placed in an incident wave field at the same fre-
quency. The latter can be chosen, for example,
as the natural resonant frequency of the body,
suggesting an application for this theory.

Using distributed compound singularities, a
wide variety of wave-free realistic bodies can be
developed, and the method can be extended to
the axially symmetric case.

Acknowledgement: The authors are grate-
ful for the support of ONR Ocean Technology
Program, Dr Tom Swean, Program Manager.

References

[1] Mclver, M., 1997, “Resonance in the unbounded
water wave problem”, 12t International Work-
shop on Water Waves and Floating Bodies,
Marseille.

(2] Newman, N., 1977, Marine Hydrodynam-
ics. MIT Press., pp. 304.

(3] Tuck E.O., Tulin, M.P. 1992, “Submerged bod-
ies that do not generate waves”, Abstract for the
Tth International Workshop on Water Waves
and Floating Bodies.

(4] Tulin, M.P., 1976, “Free surface flows without
waves”, Abstract and Lecture, 13" TUTAM
Congress, Delft.

(5] Tulin, M.P., 1982, “Free surface flows without
waves”, HYDRONAUTICS, Incorporated Tech-
nical Report 8035-2.

[6] Tulin, M.P., Oshri, 0., 1994, “Free Surface Flows
without Waves; Applications to Fast Ships with
Low-Wave Resistance”, Proceedings of the 20th
Symposium on Naval Hydrodynamics (Santa
Barbara), pp.157-169.




Abstracts: 13th International Workshop on Water Waves and Floating Bodies 39

| : I
3 -5 L5 3

81O

Figure 2: Heave motion. One parameter fam-
ily of wave free flat bottom bodies for a/V}
varying from 10~3 (smallest body) to 5.
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Figure 3: Heave motion. For « = 1. inside
and outside families of body shapes.
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Figure 4: Heave motion, resonant case. One
parameter family of body shapes that gener-
ate trapped modes.
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Figure 5: Roll motion. One parameter family
of wave free flat bottom bodies for a/§g = 10.
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Figure 6: Roll motion. One parameter family
of wave free twin hull bodies {a /2 = 10).
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Figure 7: Roll motion, resonant case. One pa-
rameter family of body shapes that generate
trapped modes (a/Qg = 10).




