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Green functions and super Green functions
In potential flows, a Green function G(£, £) defines
the velocity potential of the flow created at a point
§=(£.,7n.¢) by a source of unit strength located at

a point ¥ = (z,y,2). The Green function for an
unbounded incompressible fluid is

47G = —-1/r

where r = /(€ —2)2+ (y — 1) + (2 — ¢)? is the
distance between the field point 5 and the singu-
lar point Z. In free-surface hydrodynamics, Green
functions can be expressed as

G=G5+GF

where G¥ accounts for free-surface effects and G
is defined in terms of simple singularities. E.g.,
for time-harmonic ship waves in deep water, the
simple-singularity component G¥ is given by

4rGS = —1/r +1/r'
where ' = \/{€=2)2+ (y — )2 + (z + ). The

free-surface component G¥' is given by the Fourier
superposition of elementary waves

e Zk—i(Xa+Yp)

4QGF_ /
™ hm dﬁ da D-Hsmgn(Df) (1a)

where k =+1/a?+3? is the wavenumber and
(XY, 2<0)=(¢~-z,n~y,(+2) (1b)

Furthermore, D is the dispersion function
= (f-Fa)’ -k
and sign(Dy) = sign(3D/0f) is given by
sign(Dy) = sign(f —Fa)

The nondimensional frequency f and the Froude
number F are defined as

f=w+/L/g F=U/\/gL

where w is the encounter frequency of the regular
ambient waves exciting the ship motions, L and U
are the ship length and forward speed, and g is the
acceleration of gravity.

Two fundamental difficulties greatly restrict
the practical utility of free-surface Green functions.

A first major difficulty is that the singular double
Fourier integral representation (1a) of free-surface
effects is nearly impossible to compute accurately
(except in very few relatively simple cases for which
the near-field behavior of GF can be determined
analytically [1]) in the critically-important limit
(X,Y,Z) — 0 where (1a) has a very complex sin-
gularity. A second major difficulty is that although
Green functions provide valuable insights, they are
not directly useful (except for idealized cases in-
volving flows about a sphere) for practical appli-
cations, which require flows generated by distri-
butions of singularities (sources and dipoles) over
hull-panels-and waterline-segments. Indeed, prac-
tical calculations involve distributions of singulari-
ties (rather than point singularities) of the form

Go

6= PO{VG g} (2)
where P, stands for a hull-panel or a waterline-
segment near a point’ &, = (z,,y,,2, <0), and ¢
and & = (62,64 ,6;) are source and dipole densi-
ties, respectively. A function (2) associated with a
distribution of singularities is called a super Green
function to emphasize its similarities and differ-
ences with usual Green functions associated with
point singularities. Evaluation of super Green func-
tions G for free-surface flows in the usual approach,
in which G and VG are evaluated using (1) and sub-
sequently integrated over a panel or a segment as in
(2), is a hopeless task which cannot be performed
accurately (notably for time-harmonic ship waves)
for field points near a waterline-segment or a hull-
panel at the free surface.

Fourier-Kochin representation
of super Green functions

However, the super Green functions G of main
interest in free-surface hydrodynamics, and their
first? derivatives VG , can be evaluated in a remark-
ably simple way using Kochin’s formulation and the
Fourier representation of free-surface effects sum-
marized below. Within the Fourier-Kochin formu-
lation [2], the free-surface-effect component

4 =/po{v(éi75’ } ®

!The reference point % may be taken at (or near) the
centroid of P,
2and indeed higher
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of the super Green function
G=g°+¢~F

is defined by substituting (1) into (3) and perform-
ing the space integration over the hull-panel or the
waterline-segment before the Fourier integration.
Thus, the free-surface component GF is given by
the double Fourier integral representation

o0 SeZk—z(Xa'i-Y,B)
ar?gF = i /d/
g 3 g D+iesign(Dy) (42)

where

(X,Y,Z<0)= (£ —z0,n—yo,{+ 20) (4b)

and S is the spectrum function defined as

g
S =/p08 {iaém +i86, +kéz} (5a)

with & = ek (z—20) +ila(z-z0)+8 (y~vo)] (5b)

The integral representations (1) and (4) of the
free-surface components GF and GF of the related
Green function G and super Green function G show
that GF is a special case of GF corresponding to

S=1

An essential property of the spectrum function (5)
associated with a distribution of singularities is

S—0 as k=vo2+ 02>

As a result, the super Green function G¥ defined
by (4) is not singular in the limit (X,Y,Z) — 0,
unlike GF which has a complex singularity in this
limit. Furthermore, space integration over a hull-
panel or a waterline-segment is incomparably sim-
pler in (5a), where the elementary wave-function
(5b) is infinitely differentiable, than in (3) which in-
volves functions G and VG¥ singular in the limit
(X.Y,Z) — 0. Thus, the Fourier-Kochin repre-
sentation of super Green functions given by (4)
and (5) effectively circumvents the two previously-
noted fundamental difficulties restricting the utility
of the classical approach based on (1) and (3). In
this usual approach, influence coefficients® in fact
cannot be evaluated with accuracy for field (con-
trol) points in the vicinity of a distribution of sin-
gularities over a waterline segment or a hull-panel
at the free surface. However, the Fourier-Kochin
representation (4) and (5) makes it possible to eval-
uate influence coefficients in all cases, including the

3which are super Green functions

most difficult and important? case involving a wa-
terline segment or a hull-panel at the free surface.

The space integration (5) in the Fourier-
Kochin representation of super Green functions is
a trivial task, as was already noted. However,
the Fourier integration (4a) is a nontrivial issue.
This critical issue is considered in [3-5] and in a
forthcoming study [6] for an arbitrary spectrum
function S and an arbitrary dispersion function
D, ie. for generic dispersive waves generated by
an arbitrary distribution of singularities. Indeed,
while super Green functions are defined above for
time-harmonic ship waves in deep water, a broad
class of dispersive waves, including steady or time-
harmonic water waves in finite water depth (with
or without forward speed) and internal waves in a
density-stratified fluid, are defined by the generic
Fourier representation (4). The most important
results given in {3] and [5] and in the unpublished
study [6] are summarized here.

Far-field waves

The generic super Green function G¥(X,Y") defined
by the Fourier representation

P Ae—t (Xa+YB) 6
g sl—lmo dﬁ/d D+Z€Slgn(Df) ©)

is now considered for generic dispersion and am-
plitude functions D and A. We may assume that
the amplitude function A(a,3) in (6) vanishes as
k — oo and does not oscillate rapidly, as follows
from (5). We have

GFng" as H=VX24Y2o0  (7)

where G% represents the far-field waves contained
in GF. The far-field waves GV are given by sin-
gle Fourier integrals along curves, called dispersion
curves, defined by the dispersion relation® D=0 :

—-i(Xa +YB) (88.)

We _ir e
Z et IIVDII

k(X Do+YDp)
T

Here, ) ,_, means summation over all the disper-
sion curves, ds is the differential element of arc
length of a dispersion curve, ||VD||> = D2 + D3
with Dy = 8D/8a and Dg = 8D/03, erf is the

with © = sign{Dy)+erf(

4because free-surface effects are largest in this case

5The dispersion relation typically defines several distinct
dispersion curves, although a single dispersion curve may
exist in simple cases; e.g. wave diffraction-radiation without
forward speed
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usual error function, o is a positive real constant
whose role is explained further on, and k. is a ref-
erence wavenumber. The reference wavenumber
k.. may be taken equal to the local value of the
wavenumber k at the dispersion curve, although
other reference wavenumbers may be used. E.g.,
for free-surface flows, k. = f? and k, = 1/F? are
proper choices for time-harmonic flows without for-
ward speed and steady flows, respectively.
In the far-field limit H — o0, (8) yields

Wo —in si i X -
g g:_o/D:gs[ gn(Dy) + sign(X -VD)]
A exp[—i (Xa +YB)|/|VD]|  (9)

Expressions (9) and (8), given in [3] and [5] respec-
tively, are asymptotically equivalent Fourier repre-
sentations of the far-field waves GY contained in
GF. The radiation condition is satisfied via the sign
function sign(Dy), which stems from the &€ — +0
limit in (6). Expression (9) is independent of the
constant o in (8). The far-field Fourier representa-
tion (9) is applied to the important case of time-
harmonic ship waves in deep water in {7]. This
Fourier integral representation of far-field waves in
generic dispersive media can be further approxi-
mated using the method of stationary phase. The
stationary-phase approximation of (9) yields sim-
ple relations, given in (8], between the dispersion
curves associated with the dispersion relation D=0
and important aspects (wavelengths, directions of
wave propagation, phase and group velocities, and
cusp angles) of the corresponding far-field waves.

Wave and local components-

In the near field, the super Green function (6) can
be expressed as the sum of a wave component GW
and a local (near-field) component GV :

GF=g"Wygh (10)

where G% is given by (8). The positive real con-
stant o in (8) may be chosen so that the local
component GV decays without oscillations, i.e. so
that the wave component G fully accounts for the
waves included in G in the near field (as well as in
the far field where GV is negligible and GF~ gW).
Thus, both the wave component G% and the local
component GV in (10) involve the constant o, al-
though the sum GW+-G¥ is of course independent of
o, like the representation (9) of the far-field waves
contained in GF.

The decomposition (10) into wave and local
components is nonunique. The wave component

G% in (10) is taken as the representation (9) in [3
and [4], where a Fourier representation of the corre-
sponding local component GV suited for numerical
evaluation is given. In the present study, the wave
component G in (10) is taken as the represen-
tation (8) obtained in [5]. The wave component
(9) used in (3] and [4] is a particular case® of the
wave component (8). The integrand of the double
Fourier integral representation of the local compo-
nent GV given in [4] is continuous everywhere but
varies rapidly across a dispersion curve. Here, the
more general expression (8) for the wave compo-
nent is used, and a remarkably simple Fourier rep-
resentation of the corresponding local component
GV is given. The near-field representation of GF
given here is mathematically exact” and is quite
well suited for accurate and efficient numerical eval-
uation. In particular, the integrand of the double
Fourier integral representation of the local compo-
nent GV given further on is continuous everywhere
and varies slowly across a dispersion curve.

Local component

Practical Fourier representations, suited for accu-
rate and efficient numerical evaluation, of the wave
component GV associated with the Fourier rep-
resentation of generic dispersive waves defined by
(6), (10), (8) are given in [6] for generic dispersive
waves and for the specific case of time-harmonic
ship waves. A dispersion relation D=0 may define
several basic types of dispersion curves, including
closed dispersion curves surrounding points (o;,8;)
in the Fourier plane and open dispersion curves.
These various cases are considered in [6]. The
case of a dispersion relation which yields open dis-
persion curves defined by single-valued functions
o = a;(f) with —00 < 3 < 0o is considered here.
Steady ship waves and wave diffraction-radiation
by a ship for 7 = Uw/g > /2/27 =~ 0.272, are
examples of this type of dispersion curves, called
open dispersion curves of type A. In this case® the
wave and local components in (10) are given by

V= —iny / 4B [sign(Dy Da) + ert(E:X )
j — 00

Aexp[—i(Xa +YB)]/D,

Here o and k, are the positive real constant and the
reference number already introduced in (8b). The

SExpression (9) corresponds to the far-field limit H — oo
or the limit o —0 of (8)

Twhereas the representation of GV given in [4] involves
numerical approximations

8for which constant-g lines intersect each dispersion
curve only once .
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relation dB/|Dq|=ds/||VD|| yields the alternative
expression

Aexp[~i (Xa +YB)|/|IVD||
The local component GV is given by

N [Saa-ive [ —ixa A
g =/dﬁe" dae i X (o N 179
-00 -00 (D ;(a——aj)Dé)
where A; and DJ stand for the values of the
functions A and D, at the j** dispersion curve®

a=qa;(f), and EJ* is the localizing function

o o? a—a;j
Ef = expl- (—57)%]

Here £} is the reference wavenumber attached to
the jt* dispersion curve. The integrand of the dou-
ble Fourier integral representation of the local com-

ponent GV is finite at a dispersion curve. Specifi-
cally, we have

A Ep4;

D (a=a;)Dé (Diy?

where AJ and DJ, are the values of A, and Dqq at
the j* dispersion curve. Furthermore, the localiz-
ing function E/*, and consequently the integrand of
the Fourier representation of GV, vary slowly across
a dispersion curve because it is not necessary to use
small values'® of the constant ¢ .

As was already noted, the foregoing Fourier
representation of the super Green function (6) may
be used for open dispersion curves of type A. An
analogous Fourier representation may be used if the
dispersion function D yields one or more disper-
sion curve, called open dispersion curves of type B,
defined by single-valued functions 8 = B;(a) with
—00 < a < oo. This Fourier representation of the
super Green function (6) is given in [6], where sim-
ilar expressions for the case of a closed dispersion
curve and dispersion curves of arbitrary shape are
also given. Applications of these Fourier repre-
sentations of generic dispersive waves to the case
of time-harmonic free-surface flows with forward
speed may also be found in [6].

9E.g., for steady ship waves and wave diffraction-
radiation by a ship for 7 > {/2/27 ~ 0.27 we have two
distinct dispersion curves, and therefore j=1,2

%whereas the representation given in [4] requires thin dis-
persion strips, corresponding to very small values of o

Conclusion

The foregoing Fourier representation of the generic
super Green function (6) is remarkable in view of
its generality!!, its simplicity and elegance, and
the fact that it is well suited for accurate and effi-
cient numerical evaluation!2. Also, the decomposi-
tion (10) into wave and local components yields
a natural decomposition of hydrodynamic loads
into added-mass and wave-damping components in
which damping effects are defined by single Fourier
integrals.

Thus, free-surface Green functions, which of-
fer importatt built-in advantages!3, can be used
as effectively as simple Rankine sources. E.g., free-
surface Green functions can be used in a calculation
method based on linearization about the double-
body flow!4, and to couple a nonlinear and/or vis-
cous near-field calculation method and a far-field
potential-flow representation [9].
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1 The representation can be applied to a broad class of
dispersive waves, including steady or time-harmonic water
waves in finite water depth with forward speed and internal
waves in a density-stratified fluid, generated by arbitrary
distributions of singularities

12The integrands of the Fourier representations of both
the wave component and the local component are continuous

Bproper far-field behavior, radiation condition

by distributing free-surface Green functions over the free
surface in a finite, fairly small, region the vicinity of the ship
since the Kelvin free-surface condition becomes nearly exact
at a small distance from the ship




