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This paper treats the problem of determining the hull form for a ship of constant
volume and fixed draft moving with constant Froude number which minimizes either
wave resistance or total drag (ignoring spraying and wave breaking). We choose one
of these quantities as a constraint and minimize the other over a set of admissible hull
forms. We treat this constrained problem by simultaneously determining the hull
form and the velocity potential for that particular hull form. Unilke the traditional
approach of minimizing the Michell integral for the wave resistance (e.g. Chapter 6
of [3]), the present paper goes a step further in applying modern shape optimization
techniques to the Kelvin-Neumann integral equation by finding an optimal solution
for the total (wave plus viscous) drag. The procedure is similar to that employed
in shape optimization for zero forward speed [1],[2].

Consider a ship with wetted surface S enclosing (together with the water plane)
a constant volume Vy moving with a constant forward speed Uy in the z-direction
and employ the standard linearized free surface boundary condition. We choose
to represent the velocity potential of the wave problem as a center plane source

distribution [4],

B(r) = / M()G(r,x')ds' + Uoz (1)
So

where S is the center plane, a planar region contained in the projection of S on
the (x, z) plane, G(r,’) is the Green’s function for the Kelvin-Neumann problem in
the absence of the ship and M is the unknown source distribution. M is a solution
of the first kind integral equation

% / M(")G(r,v')ds' = -Upi-%, ronS (2)
So

and A is taken to be the outward normal (into the fluid) on S.

In terms of the Havelock function H(r,r’)
1 1
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where r} = (z',y’, —2'), the wave resistance can be expressed as

0
D, = M(r)M(x')=—H (r,r')dsds’ (4)
5[ é{ 0z

G(r,r') = - + H(r,r') (3)
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and the viscous drag, for simplicity, is assumed to be proportional to the surface

area, i.e.,
D, = /ds. (5)
S

We confine attention to a set of admissible surfaces, Ay, x,, With constant
volume, symmetric about the center plane with a rectangular shape of fized
draft/waterplane length as follows:

S € Ay, ifS=8tUS~

where
zo 20
St ={rly= f(z,2) 20, || < =z0, / /f(x,z)dzdx = %,
%o 0
0< z< 2, f€C?*suppf), suppf C [~=Zo, o] X [0, 20}, ;Cz_o(; = Ao}
and

S™ = {I‘ - (CE, "'yaz) |(xaya Z) € S+}
+ & S, —fx,:hl, —fz
On S*, we have 1 = ey

Then we may define the defect in satisfying the integral equation as

8 -
Il [ MG + U &l (6)
S()

However S is not known. This quantity may be expressed in terms of integrals over
planar regions in the (z, z) plane as

arg azo

1= [ 0/ Uofe+ (fege — 5 m%) S/ ME)GE s | P

—axg y:f(:z:,z)

1+ f2+ f2dzdx (7)

when 0 < a < 1 is a constant and zo and zo are respectively the half-length and
draft. This functional involves both the unknown source distribution as well as the
unknown surface.

Similarly the wave resistance has the form

axrg zZg QAT azg 8H
D, = / / / / M(z,2z)M(z',2") 5:—;(:1:, z,x', 2 )dzdzdz'd2’. (8)
0

—axg 0 —axo




Abstracts: 13th International Workshop on Water Waves and Floating Bodies

while the viscous drag can be expressed approximately in terms of the unknown
surface as

o 20
/ VIT 21 /2 dedz )
—xzg O

Introducing new variables L& = x, LZ = 2, and defining f(%, %) := $f(z,z),
the functionals J and D,, may be rewritten so as to entail integration over the fixed
domain [—a, ] x [0, /\oa]

a alg a alg
// Uofz + fa: = — = +fz / / M(%,9)G(Lr, Lr') K
—a 0% 8 y= f(a: Z)

0

A1+ f2+ 72 (L?) dzdz, (10)

and

Il

« a/\o a/\o

D, =1L? / / / M(fz,z)M(i’,é’)%H(i,Z , 2" d@dzdz' dz’ (11)

- —a 0

while D, has the form

1 Ao
// 1+ f2 + f2dzds. (12)
Z10

We choose to study, here, optimization problems which can be formulated in
terms of these expressions for fixed Ag,

(PI) minimize D, + VoJ
over the class Uy, subject to the constraint

D, <K
where K is some preassigned constant, and
(PII) minimize D, + VoJ
over the class Uy, subject to the constraiﬁt

D, <K.
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The new concept of shape optimization may be found useful in ship design.
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