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1 Introduction

It was observed in model tests and prototype experiments that tension leg platforms(TLPs) and gravity base struc-
ture(GBSs) experience sudden bursts of highly amplified resonant activities (ringing) during storms. The ringing phe-
nomenon will induce extreme stress in tethers, end even tethers breaking. It was found that ringing occurs at low
frequency and ringing periods are about 3-5 times of the period of the corresponding incident waves. Thus, the calcula-
tion of third order force will be significant in predicting ringing phenomenon.

Nonlinear problems are characterized by forcing term in their boundary conditions. For the third order potential, the
forcing term on the free surface includes both first and second order potentials. The difficulty in calculating third order
force is that second order potential can not be expressed in an explicit form efficiently. Usually, it is represented by an
integral equation and an infinite integration has to be carried out on the whole free surface. The present work proposed
a one-step forward prediction method to calculate the second order potential on the free surface. Special concerns are
also given to the treatment for the logarithmic singularity in the ring Green functions. Then, the third order forces are
calculated by an indirect method, which is analogous to the indirect method for second order force.

The method has been implemented for axisymmetric bodies, and no difficulty has been found for extending it to
arbitrary bodies, like TLPs. For axisymmetric bodies, a novel integral equation is also proposed.

2 Free Surface Condition

We assume the incident monochromatic waves have an incident frequency w. Then , the first, second and third order
harmonic potentials with the frequencies of wy = w,w2 = 2w and w3 = 3w are considered for the present interest. We
separate the time dependencies explicitly, and write potentials at each order of € as

8U9)(z,y,2,t) = R[¢" (z,y, 2)e7*7"] )

Then, we can write the free surface conditions for each velocity potentials as
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where the forcing terms 2) at each order of € are
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3 Integral Equation

We separate velocity potentials and forcing terms into incident and diffraction components as
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Expanding the diffraction potential and the Green function into the following series
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for axisymmetric body, we can derive the integral equation for t_he mth mode of jth order potential as
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after using a technique to weaken the singularity, where Gy, is well known as the ring Green function and Go is the
simple Green function which satisfies only the fixed free and bottom surface conditions.

4 Numerical Implement

For second order potential in fluid domain, two integrations have to be carried out both on body surface and on free
surface when applying integral equation method.

4.1 Integral on the free surface
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Defining Ly, term as . :
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The limitation of Ly term for large n is L3,,, and its infinite sum is Lj,, which has a logarithmic singularity when the
field point is close to the source point.
To remove the logarithmic singularity, we rewrite the integral as
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For large modes, inside the range (r — Ar, 7+ Ar) the first two terms can be canceled each other; outside the range the
difference can be neglected. For the third term, a transform is used to remove the singularity. Then the integration can
be represented as :

N N .
Iem(r0,0) = —[>_ CuTma(ro) = Y _ Vinn(ro) + Vmo(ro)] (12)
n=0 n=1
where
1 ro+Ar @
Volre) = —o= [ a@h(rinl1 - exp(~SIr — rol)] (19)
0 o—AT
1 To+Ar @ ™ T
R IR r 14
an (TO) 2nw rg—Ar qu (T) exp( nd IT TOI) T0 dr ( )
Tmo(ro) = Smo1(r0)Jm(karo) + Smoz(r0)Hm(kzro) (15)
Tmn("'O) = Smn1 (TO)e‘““roIm(Km"'O) + Smn2(7'0)ennro Km(nnTO) (16)
where
Smo1(r1) = % 42 (r)Hm(kzr)rdr = Smoi(ro) — = / 2 (r)Hm(kar)rdr

L}

Smoz(r1) = % / @ (r)Jm (kor)rdr = Smoz(ro) + % / ¢2 (r)Jm (kar)rdr

244




Smni(r1) = / q(Dzzn(r)Km(nnr)rdr=Sm,.1(rg)e'°"('1_'°) - / ql,zzn(1')K,,.(ls:,.’r)rdre"""l
”’1 . E

0
71 T1
Smn2(r1) = / qggn(r)zm(n,.r)rdr=sm,,2_(m)e-""(”-’°>+ / 42 (1) In(knr)rdre "
a 70
4.2 Integration on the body surface

For those points not close to body surface, we write the body integration as
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where Upno and Umn are determined by the body integration. When the point is close to the body surface, a technique
is also used to weaken the near singularity.

5 Hydrodynamic Force

‘We divide the third order force into three terms
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Similar to the second order force, the third order diffraction force can be further divided as
9 = 3iwp / (#m; + ;2L o+ 3iwp / / hds (22)

by using an auxiliary radiation potential %; a.t triple frequency of incident wave.
Dividing the third order forcing term ¢‘® into two terms, q(s) (consisting of only the first order potential) and q(3)

(consisting of the first and second order potentials), the most difficult integral on the free surface, i.e. f f ¢,q(3) ds, can
be represented as
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6 Numerical results

As the first step, a case of uniform cylinder with radius of a in a water depth of d/a = 10 is considered. Figure 2 shows
the comparison of third order surge force of the present calculation with the Malenica and Molin’s (M & M’s), Faltinsen,
Newman and Vinje’s (FNV’s) analytical solutions and experimental results. It can be seen that the present calculation
agrees well with M & M’s results except for faz component.

Figure 3 shows the comparison of third order pitch moment-about the free surface with experimental results. The
experimental results are very scattered, and no conclusion can be found. From the calculation.results it can be seen that
there is a peak at low frequency. This maybe is the exciting source of ringing phenomenon on TLP and GBS. At that
frequency, the corresponding force is not very high. The reason for this peak is the acting point of third order surge
force is low.
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Figure 2 Third order surging force on a uniform cylinder (d/a=10)
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Figure 3 Third order pitching moment sbout Zc=0 on a uniform cylinder
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DISCUSSION

Kim M.H.: The convergence test of the second-order diffraction computation is
very complicated and cumbersome because of multiple parameters to be tested.
Have you done any systematic convergence tests for the 3rd order diffraction
problem?

Teng B., Kato S.: We did make systematic convergence tests for the 3rd order
diffraction problem. At first I found our results were not correct. Then I spent a lot
of effort on the examination of its convergence. Firstly, I examined the
convergence of each terms. After having gotten their convergence, I made
convergence test for the whole system.

Rainey R.C.T.: The authors are to be commended on the skill of their
investigation of the difficult topic of 3rd order diffraction. However, I dispute its
relevance to "ringing" because:

1) in waves big enough to cause "ringing", the ratio (wave height)/(cylinder
diameter) is generally greater than 1, so that Stokes's expansion has diverged.

2) "ringing" can be at much higher frequencies than the 3rd harmonic, e.g. at 10
times the wave frequency.

See the forthcoming paper by J. Chaplin et al. (Journal of Fluid Mechanics,
1997).

Teng B., Kato S.: This study deals with the estimation method of 3rd harmonic
forces on axisymmetric floating bodies by means of straight forward perturbation
technique.

We do not claim that the cause of ringing of a uniform cylinder is due to 3rd
harmonic wave forces.
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