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1 Introduction

The low-frequency motion of floating marine struc-
tures such as moored ships and oil platforms are
one of the main concern in ocean engineering. The
low-frequency motions are excited by slowly oscil-
lating second-order wave forces and the resonance
causes large amplitude horizontal motions. The ac-
curate estimation of the amplitude is very important
for the design of mooring system. The conventional
damping force due to viscous effect and wave radi-
ation are small and wave-drift damping, resulting
from the interaction between an incident wave and
low-frequency oscillatory motion of a floating body,
is dominant. Therefore the accurate estimation of
wave-drift damping is indispensable.

Wave-drift damping has been studied experimen-
tally and theoretically by Wicheres and Slujis U,
Saito, Takagi, Ohkubo and Hirashima 2, Faltinsen ),
Hearn and Tong ¥, Nossen, Grue and Palm %), Zhao
and Faltinsen ©, Eatock Taylor and Teng 7, Suna-
hara 9 and others. In their approach, wave-drift
damping is analyzed in a quasi-steady manner, based
on the rate of change of the added resistance in
waves, with respect to small steady forward velocity.
Newman ® outlines a procedure for the more direct
derivation of wave-drift damping from a perturbation
analysis and extracted it from second order radiation
force at low-frequency.

In this study, a numerical approach is taken for the
fully nonlinear analysis of the interaction between an
incident wave and low-frequency oscillatory motion
of a floating body. Using the fully nonlinear simu-
lation method 1), three motions of a moored two-
dimensional body are simulated in presence of a reg-
ular wave field and the hydrodynamic force due to
the interaction is extracted from horizontal hydrody-
namic force act to the body. Based on this numerical
study, added mass and damping coeflicient due to
the interaction are analyzed and a rational explana-
tion of wave-drift damping is proposed. The relation
between this explanation and the conventional expla-
nation based on quasi-steady analysis is discussed.

2 Target of the numerical simulation

Motions of a moored two dimensional floating
body in a regular wave is considered. Fig.1 shows the

target of the simulation. The ideal fluid is bounded
by free surfaces, a piston wave maker, a flat bottom,
a vertical wall and a floating body. The fluid motion
is described by velocity potential and acceleration po- .
tential. Motion of the floating body coupled with the
fluid motion is solved in the acceleration filed using
the implicit body surface boundary condition. All
three degrees of freedom are simulated.

Following a preceding work of Cointe et al. 19),
artificial damping zones are applied to prevent wave
reflection from both ends of wave basin. Inside of the
damping zones, damping terms are added to both
dynamic and kinematic free surface boundary con-
ditions to give damping effect to free surface. These
damping zones effectively work as a wave breaker and
an absorbing wave maker. The motions of floating
body can be simulated for long time without affected
much by reflection waves.

The detail of this simulation method with damping
zone is presented in reference paper 12),

3 The interaction between incident wave and
low-frequency body motion

To study the interaction between incident wave
and low-frequency body motion, the hydrodynamic
force purely due to the interaction is extracted from

following four nonlinear simulations presented in §3.1,
§3.2, §3.3 and §3.4.

3.1 Simulation of moored body motions in
still water

To obtained the basic characteristic of the moor-
ing system in still water, free oscillatory motion is
simulated. Fig.2 shows the simulated velocity of the
body and the horizontal hydrodynamic force acts to
the body. Fourier analysis of the simulated results
gives following information.

e The rhtural frequency of the moored body mo-
tion in still water is &, = 0.384 rad/s .
e The added mass of the motion is
m;a(@,) = 155.75 kg .
e The damping coefficient of the motion is
¢sa(@o) = 0.1091 N/(m/s) .
Since the radiation wave length correspond to @,
is about 390m and more than 520 times wider
than body breadth, these hydrodynamic coefficients
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are similar equal to the limit values m,q(0) =
148.56 kg, c¢,q(0) =0 when w, —0.

3.2 Simulation of the moored body motions
in a regular wave

Next, free motion is simulated in the presence of a
regular incident wave (wave length A = 2.7 m , wave
amp. (; = 5 cm, wave period Ty = 1.316 s).
Fig.3(a) shows the simulated sway motion and sway-
ing force act to the body. For the analysis of the slow
motion, low-frequency components are extracted by
FFT from swaying velocity and swaying force. These
are plotted in Fig.3(b) as U and Fx . Two differ-
ences exist between Fig.2 and Fig.3(b).

e The natural frequency of slow oscillatory mo-
tion in the regular wave is & = 0.420 rad/s
and different from that of in still water.

o The significant damping is observed in the reg-
ular wave meanwhile damping is weak in still
water.

Fx in Fig.3(b) is composed of steady wave-drift
force Fx and slowly varying component Fx , which
is considered to be the main cause of the differences.

3.3 Simulation of forced oscillation of the
body in still water

To obtain the hydrodynamic force purely due to
the interaction between incident wave and slow os-
cillatory motion, we have to remove the conventional
hydrodynamic force Fy;q due to low-frequency os-
cillation from Fx . F,; can be obtained from the
simulation of forced oscillated body motion in still
water. The bottom raw of Fig.4 shows the simulated
F,q . The added mass and damping coefficient for &
can be obtained from Fourier analysis of this force.
Then F,; for arbitrary motions is given as

Fsd = msd(&)U + C,d((:))U . (1)
Theoretically, F,q can be removed from Fx in
Fig.3(b). But for quantitative study, the simulation
of transient motion is not adequate and periodically
steady state of low-frequency oscillation should be
simulated.

3.4 Simulation of the moored body motions
oscillated by a low-frequency external
force in the regular wave

An external low-frequency force Gx , which is
synchronized to & , is added to the body to oscil-
late the periodically steady low-frequency motion in
the presence of the regular wave. The results are
plotted in Fig.5. The amplitude of Gx 1is set to
|Gx|=18 N = 0.2Fx in this simulation.

The top row of Fig.5 shows simulated sway mo-
tion from ¢t = 0 to 250 Tw , the 2nd to the 4th

row show sway motion, swaying velocity and hori-
zontal hydrodynamic force magnified in time from
t =150 Tw to 200 Ty and the 5th to the 6th row
show low-frequency components of them extracted by
FFT. Since the amplitude and the phase of forced
oscillating motion shown in Fig.4 are equally set to
those of low-frequency motion in Fig.5, the hydrody-
namic force due to the interaction is simply given as
Foa = Fx - Fyq . Here, we call F,; as wave-drift
force, which is composed of steady wave drift force
Fyq = Fx and unsteady force F,4;. The bottom
row of Fig.5 shows F,q4

3.5 Interaction between incident wave and
slow oscillatory motion

Using Fyq and U presented in Fig.5, the inter-
action can be quantitatively studied. Fourier analysis
of Fyq and: U gives following information.

o The amplitude of Fyq is |Fy,4| = 1814 N

e The amplitude of U is |U|=0.0551 m/s

e The phase between F,4 and U is

6 =2.712 rad.
When the simulation converges to the periodically
steady state, the damping force balances with the
exciting force. Above results, obtained from indepen-
dent simulation shown in Fig.4 and Fig.5, well satisfy
this condition |F, 4| = |Gx| and that demonstrate
the accuracy of these simulations.

Next, here we write

U = |U|sindt 2)
and decompose F4 into sin and cos components
Fya = |Fyd|cos0sin&t + |Fyglsinfcosdt . (3)

Then added mass and damping coefficient due to the
interaction are written as

| Fia|siné

Ay = ——————

_ | Fywd| cos @
Substituting the values of |Fyuq4|,|U| and 6 in
these equations, we have Ax = -32.65 kg, Bx =

29.93 N/(m/s) . We should not confuse Ax,Bx
with the conventional hydrodynamic coefficient
Msd, Csd d‘!ﬁz to the oscillatory motion. Ax and
Bx do not exist without incident wave.

Using Ax , the difference between &, and &
can be explained. The spring constant of the mooring
51.07N/m , the body mass 191.79kg and the added
mass in still water 155.75kg gives the estimation of
the natural frequency in still water 0.383rad/s =~
@, . Taking the added mass reduction Ax into ac-
count, the natural frequency in the wave field be-
comes 0.403rad/s~ @ .
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3.6 Wave-drift damping

Byx is considered to be wave-drift damping for
frequency @ . On the other hand, in the theoretical
studies, wave-drift damping is defined in quasi-steady
manner as oF

By = — X
X U U=0 . (6)

The relation between Bx and Bx can be clearly
shown as follows.
Using eq.(2), eq.(3) can be written as

|Fypa|sin@ .

_ |Fyal|cosé
SI0] U. (7)

Fua= U] U+

When the slow drift motion is in periodically steady
state, |Fyq| and |U| are constant. Therefore, par-
tial derivative of F,; with respect to U is given
as

OFyq _ |Fua|cost led|sin06_U_ (8)
U |U| olU] 8U -’
Taking the relation
oU U
- YT ®

into account, 8U/OU becomes zero at U = 0 and
we have formula

OF 4 |Fwa| cos
Zlwd =l 77 10
oU |y=o (U] (10)
Therefore, Eq.(5) is finally written as
8Fwd
= —— . 11
BX aU U=0 ( )

This definition of wave-drift damping is valid for
@ > 0. When & tends to zero, Fyq — 0 and
Fuq — Fx can be substituted to eq.(11) to have the
conventional definition eq.(6).

4 Conclusion

The hydrodynamic force purely due to the interac-
tion between incident wave and low-frequency body
motion is extracted by following nonlinear simula-
tions

1. Free motions of the moored body in still wa-
ter is simulated to obtain the natural frequency
@, 1n still water.

2. Free motions of the moored body in a regu-
lar wave is simulated to obtain the natural fre-
quency & in the regular wave field.

3. Forced oscillatory body motions in still water
in frequency & is simulated to obtain the con-
ventional hydrodynamic force F,q due to the
low-frequency oscillation.

4. The moored body motions oscillated by a low-
frequency external force in frequency & in the
regular wave field is simulated to obtain the hy-
drodynamic force Fy4 = Fx — Fy;q purely due
to the interaction,

and the rational explanation of added mass Ax and
the damping coefficient Bx due to the interaction is
given. Thi%r‘explanation reflects the dynamics of the
interaction. Series of simulations with different &
will teach as the frequency dependency of Ax and
Bx .
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Fig.5 Simulated free oscillatory motion and hydrodynamic
force excited by external low-frequency force
in the regular wave




DISCUSSION

Molin B.:

1) It seems to me that your procedure to determine wave drift damping is a lot more
complicated than what one usually does in a wave tank (i.e. decay tests in still
water and regular waves). Can you comment why?

2) Have you made comparisons with published experimental or numerical results?
3) I want to comment that the often observed change in low frequency added
mass has more to do with viscous effects than with potential effects.

Tanizawa K. + Naito S.:

1) For the estimation of the wave drift damping, free decay tests are not accurate
enough because they are transient phenomena and affected by viscous force.
What we usually do is low speed towing test in regular waves based on the
conventional definition of the wave drift damping (i.e. the rate of change of the
added resistance in waves with respect to small steady forward velocity). But,
since this definition is derived from quasi-steady analysis, I proposed dynamic
definition of wave drift damping and introduce series of fully nonlinear numerical
simulations to determine the wave drift damping based on this dynamic definition.
2) No, not yet.

3) Thank you very much for you comment. Of course viscous effects may affect to
the added mass change. What I explain in my talk is pure potential effect to the
added mass change. |

Newman J.N.: Your approach seems analogous to the rationale in my 1993 paper
except that I used a perturbation expansion in powers of the wave amplitude (A)
and you use a fully nonlinear simulation. I ignored the O (Az) added mass since it

seemed unimportant compared to O (1) conventional added mass. This suggests
that your shift in the natural period of slow drift motions is O (AZ). Do you have

any results to confirm this?

Tanizawa K. + Naito S.: I simulated the slow drift motions for various wave
heights and checked the dependency of the natural frequency to the wave
amplitude. The simulated results in Table A show that the change of natural
frequency is almost proportional to O (Az) and this can be a confirmation of your
analysis. So, when wave amplitude is small, the change of frequency is not
significant. But for larger amplitude wave, the change is not negligible.
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Table A: Natural frequency of slow drift motion in regular waves

A/B /5,
0.0 1.0
0.0169 1.0052
0.0338 0.9948
0.0507 1.0182
0.0676 1.0938
0.0845 1.1901

Wave amplitude

Body breadth 0.74 m
The natural frequency in still water 0.384 rad/s

Wave lenghth 2.7 m
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