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Introduction

Two-dimensional fully nonlinear transom stetn flow is investigated using the
Desingularized Euler - Lagrange Time-domain Approach or DELTA method. Mixed Euler-
Lagrange time stepping is due to Longuet-Higgins and Cokelet (1976). The field equation is
solved using the desingularized boundary integral method described in Beck et al. (1994).
The flow is unsteady in that the problem is started from rest and accelerated up to steady
forward speed. The purpose of this study is to compare with previous steady calculations
and to provide a starting point for extending to unsteady fully nonlinear three-dimensional
transom stern flows.

The cases studied herein correspond to those in Vanden-Broeck and Tuck (1977) and
Vanden-Broeck (1980). They compute nonlinear waves behind a transom stern using a
series expansion in the Froude number. The problem is solved in an inverse manner in
which the coordinates z and y are the dependent variables and the velocity potential and
stream function ¢ and v are the independent variables. The series expansions in z and
y are everywhere divergent but can be summed by standard methods. Integro-differential
equations with nonlinear boundary conditions are solved in the inverse space to obtain the
expansion coefficients.
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Figure 1: Problem configuration

Problem Formulation

Figure 1 shows the problem configuration. The z — y coordinate system is translating
with speed Uy in the negative z direction. Laplace’s equation governs in the fluid domain
and the velocity potential is ® = U,z + ¢. The surfaces which bound the fluid are: Sp =
Free Surface; Sy = Body Surface; S;y = Upstream Truncation Surface; Sp = Downstream
Truncation Surface; Sg = Bottom Surface.
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The boundary conditions are:
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where % = % + V@& .V is the material or Lagrangian derivative, ©i = (n1.n2.n3) is the

unit normal on the body pointing out of the fluid, g is the acceleration of gravity, i is the
free surface elevation, and ¢ is the perturbation potential. The boundaries St and Sp are
unspecified. We have run cases with Sy and Sp prescribed to satisfv continuity and saw
very little difference in the results as long as Si' and Sp are far enough up and downstream
respectively. We placed the trunction boundaries about twelve wavelengths away from the
transom for these calculations.

Results

Vanden-Broeck (1980) suggested that two realistic solutions exist for the steady flow
behind a transom stern. For small values of the Froude number. the flow rises up the tran-
som to a stagnation point. The free surface separates from the transom at the stagnation
point creating waves downstream which increase in steepness with increasing Froude num-
ber. We'll call this solution A. This solution is physically unreasonable for large values of
Froude number because the ratio of stagnation height to transom depth goes to infinity
as the Froude number goes to infinity. For large Froude numbers a second. more physi-
cally realizable solution exists in which the flow separates cleanly from the bottom of the
transom. We'll call this solution B. This solution reduces to the uniform stream as Froude
number tends to infinity and the downstream waves steepen as Froude number becomes
small. In fact, Vanden-Broeck (1980) found a minimum Froude number (= 2.26) below
which the downstream waves would exceed the theoretical breaking wave steepness limit
(2A/X = 0.141).

The problem is started from rest and the hull is accelerated up to steady forward speed.
Using the DELTA method, the inviscid solution always tends towards configuration A as
the hull reaches steady forward speed, regardless of the Froude number. In a viscous fluid,
we know that the flow behaves like solution B for high Froude numbers. As the hull
speed increases from rest, the flow separating from the bottom of the transom becomes
turbulent, resulting in the “dead water™ region commonly observed behind transom sterns.
Consequently the pressure behind the transom is lowered. Eventually the falling pressure
causes the free surface to drop to the bottom of the transom resulting in the solution B
flow. Once the flow is separating cleanly from the transom, the turbulence is confined to
the thin boundary layer (for high speeds) and viscous wake. Using an inviscid flow model,
it appears to be impossible to proceed from transom wetted to transom dry. However. we
did find two techniques which resulted in solution B

The first was to start the problem at steady forward speed with the transom out of the
water. The hull is then lowered slowly into the water. As the hull is lowered, the free
surface remains separated from the bottom of the transom and solution B results. This
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technique will not work for a problem starting from rest with the transom immersed. In
order to obtain solution B for the problem starting from rest we tried a second technique
in which we attempt to mimic the effect of the dead water region by artificially lowering
the stagnation pressure on the transom. This pressure drop can be modeled in the inviscid
flow code by modifying the boundary condition on the transom. The condition,
gg = —-Ubn1~

causes the stagnation pressure. We reduce the stagnation pressure by modifying the transom
boundary condition to:

9¢ = —Upm (‘Ze"m2 - 1)

on
As the hull accelerates up to speed, the pressure on the transom drops until the free surface
drops down to the bottom of the transom. When the hull reaches steady speed, solution B
is recovered.

The general numerical details are similar to those outlined in Beck et al. (1994). There
is a double node where the free surface meets the transom in the solution A flow. One node
satisfies the body boundary condition while the other satisfies the free surface boundary
condition. Treating the intersection in this manner has consistently worked well in the
desingularized method. There is one additional constraint (or Kutta condition) at the
bottom of the transom in the solution B flow. The free surface nodes are allowed to move
downstream with the fluid velocity during the intermediate time steps (we're using 4" order
Runge-Kutta). At the end of a major time step the free surface nodes are regrided back to
their original positions by interpolating elevations and potentials. The Kutta condition is
imposed by regriding the first free surface node back to the bottom of the transom. The
potential at this point is computed from the source strengths.
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Figure 2: Solutions A anq Bat Fyg =63

Figure 2 shows the waves generated by the transom stern at Froude number based on
transom depth of Fy = Uy/\/gH = 6.3. The fully nonlinear solution starting from rest is
compared with Vanden-Broeck's 1980 results which are also fully nonlinear. Both steady
state solutions A and B are compared. The solutions agree quite well except there is a
noticeable difference in wavelength for solution A.
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ar | A |22 | ap | A

Vandep«Broeck 0.53 | 12.1 | 0.088 126 | 11.5
DELTA 051|116 | 0.088 || 12.6 | 11.6

Table 1: Comparison of downstream wave characteristics for solution A

Table 1 shows downstream wave characteristics for the Vanden-Broeck (1980) and DELTA
solution A. Here, a* = a2¢/U{ is the nondimensional wave amplitude found by subtracting
the minimum wave elevation from the maximum and dividing by two for the downstream
waves and A* = A2g/U? is the nondimensional wavelength. Since the phase speed of the
waves equals Uy, we can use the deep water dispersion relation to estimate the wavelength.
The linear wavelength is A\ = Ao2¢/U2? = 41 = 12.6. Using the 5% order dispersion
relation for deep water Stokes waves (U? = g/k(1 + (ka)? + 5/4(ka)*)) and the computed
wave amplitude (a) we can solve for the wave number (k) and get an estimate for the
nonlinear wavelength (A} = A\42¢g/U?). Although both computations show waves with the
same steepness, Vanden-Broeck’s waves do not satisfy 5% order dispersion.

Conclusions

For two-dimensional transom stern flow, the transition from transom wetted to transom
dry at high Froude number is accomplished in the inviscid flow model by modifying the tran-
som boundary condition. Perhaps a more appropriate transom boundary condition could be
contrived which allows solution A for low Froude numbers and transitions appropriately to
solution B as the Froude number increases through the critical value (Fy = 2.26). Presum-
ably this technique may be applied to the unsteady three-dimensional problem. Of course
flow behind a three-dimensional transom is much more complex and requires further study.
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DISCUSSION

Tuck E.O.: Can you explain why the particular form of the body boundary
condition was chosen, with the property that the RHS exactly changes sign as ¢
goes from 0 to e. As ¢ — o, since no part of this boundary is wet, it surely doesn't
matter what the limiting boundary condition is.

Scorpio S., Beck R.: The boundary conditions was: _38_9 =-Upny (2e"B’ - 1).
n

At t=0, —ag=—Ubnl,as t—> oo, gg—->+Ubn1.
n

on
o . @ _ —pe? @Z . .
Initially we tried o Upny e ™ but 5 — 0 as t — e was not strong enough to
n n
suck the free surface down to the bottom of the transom. g—q) had to change sign in
n

order to generate the necessary drop in pressure. Professor Tuck is absolutely

correct in that there is no significance in a—¢ — +Upny as t — oo,
n

In fact, the form of the boundary condition was arbirarily chosen to provide a
smooth transition from transom wetted to dry. Surely there are many choices of
boundary condition which would produce the same result.

Yeung R.W.: 1In a recent work (Yeung, 1991, Math. Approaches to
Hydrodynamics, SIAM Publ.) a number of "time-dependent" solutions were
worked out in the context of "solution A". There was basic agreement with
Van-den-Broeck's results. In the same article (see also Yeung & Ananthakrishnan,
1992, 19th ONR Symposium), a solution with viscosity is given to illustrate how an
entrained vortex is first formed at the "sharp stern”, leading eventually to its
"sheering off". Presumably, at sufficiently large time, the drop in water level in the
stern will approach the keel point. These references may serve to explain what is
happening at the stern physically.

Scorpio S., Beck R.: We would like to thank Professor Yeung for his comments
and for the references that we are sure will be’most helpful. The mechanisms that
cause the transom stern flow to proceed from wetted to dry as the ship accelerates
from rest are very interesting. We think there is a good qualitative understanding
of this process already. Perhaps some careful physical experiments, or numerical
experiments as cited by Professor Yeung, can give us a better quantitative
understanding of this process.
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