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1.Introduction o

A thin membrane with small bending rigidity floating on the water surface is a model of a floating
structure with huge horizontal size as large as several kilometers and very small draft of a few meters;
this configuration is a recent conceptual design of floating airport. We present a theoretical method
to predict hydroelastic response of such membrane to the wave action of incident wave at a constant
frequency w. ‘

2.Formulation

The dynamic condition and the kinematic condition for the velocity potential ¢(z,y, z)e™? of the flow to
be satisfied underneath the membrane occupying the part of z = 0 surface represented by Qs in Fig.1
are :
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where D is the bending rigidity, d the draft of the membrane, p the density of water and w(z, y)e? the
vertical displacement of the membrane from the equilibrium position (Ohkusu & Namba (1996)). Notice
that those conditions are imposed at z = 0 because the draft d is negligibly small. Obviously the free
surface condition on the water surface Qw, z = 0 plane other than Q,, is given by
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Our problem is to solve a boundary value problem of

V24 =0 (4)

with the boundary conditions (1) and (3) and other condtions such as radiation condition and the edge
condition of the membrane when a wave is incident on the membrane. Once ¢ is known we compute the
deflection w of the membrane by using (1) and (2).

This problem may be considered as a problem of the wave propagation on two different media Q
and Qw, whose characteristics are represented by a quasi-free surface condition (1) and a free surface
condtion (3) respectively. The “wave” elevation on the surface Qs is given by equation (2). The wave
elevation on the real water surface Qdyw is also written similar way.

Dispersive relation corresponding to the quasi-free surface condition (1) will be written in the form
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where k, is the wave number of the “waves” occuring in the region €. One of five roots of equation
(5) is a real number kp. Two of other roots are complex numbers corresponding to the evanescent waves
prevailing at the edge of the membrane. Another two roots have negative real part and not legitimate
for our problem of deep water because the wave motion increases infinitely as z approches —oo.

The wave number k = w?/g on the Qw is not equal to kx on the ©3s. This means the waves incident
on the membrane are refracted following Snell’s law when they propgate from the water surface into the
membrane surface. Since k > kx generally, the incident waves do not penetrate into the membrane when
the incident angle is less than a critical angle.
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Let us consider the case when the wave length of the incident waves coming from the positive z is
very small compared with B the breadth and L the length of the membraneas. It is a natural situation
because the horizontal size of the structure is huge. So we assume kL >> O(1) and kB >> O(1).
The waves penetrating through the edge EF at x = 0 into the region Q3 at 0 << y << B will be
approximately two dimensional waves uniform to the y direction, which would occur if the membrane

extended from y = —o0 to y = +oo without any edge. This is because the waves in that location many
wavelengths away ffrom the edges is hardly affected by the existence of the edges at y = 0, B. Ohkusu &
Nanba (1996) gave this 2D solution. e

The velocity potential ¢op of the 2D wave with uniform crest along the y direction and propagating
into the positive x will be written in the form

$op = pap(x, z)e kA% (6)
when it propagates deep at z >> O(1) into Q5. We can assume ky is large and
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in this location. The wave elevation near the edge FG (y ~ 0) and HE (y ~ B) on 1y must have a
component matched with the form (6), which will be expressed in the form

¢A = ¢A(-’E,’£/a z)e_ikAw (8)
Another component of the wave elevation to occur near y = 0 or y = B will be

¢0 = ¢0("E’y7 z)e—ikz (9)

This will be a penetrated wave through the edge FG at y = 0 or HE at y = B from the water surface into
the 057 Nevertheless the incident waves e "**® are travelling into the direction paralel to both the edges
and their incidence angle to the edges is zero, much less than the critical angle; since the progressing
waves can not penetrate into the region Q) and the wave (9) must be the evanescent wave significant
only near the edges, at y = O(k™*) or y = B — O(k™1).

Our final solution for the velocity potential ¢ is a summation of k5 component (8) and k component
(9)-
3. ky-component
éa of (8) will be derived as follows. 942/dz << ky transforms V3¢, to

The condition (1) on Qs is approximated by
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The edge conditions of the membrane will be given by
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Here v is Poisson’s ratio but we assume v = 0 in the article for simlicity.

The free surface condition on Qw is equation (3). It is straightforward to find radiation condition
on the water surface side, which is

¢ANAeik\/1—(kA/k)2y at y— —o0 (13)
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The solution should match with (6) on the Q25 side when it is away from the edge of y = 0:
Yo ~ ¢op(z,2) at y=Y (0<<Y << B) (14)
The solution ¢ satisfying all the conditions (10) to (13) is given by

¢A(x7 Y, 0) = f(x)'lz’/\(%) 0) (15)
Here 1, is a solution of a linear Fredholm integral equation ‘

Paly, z) = e + kA/O (m(y’,Z) - %/0 (', m)va(n, O)dn> Sy, zy,0)dy’ at z=0  (16)

where S(y, z;y', 2') is wave source function of the Helmoholtz equation satisfying (10) and the radiation
(13) which has been extensively studied. One expression of the wave source function is
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The Green function g(’,n) in the equation (16) is a solution of
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with the boundary conditions (12) (v = 0 is assumed ) and

dg
The condition (11) is readily transformed into an integral form using g(y,y’) as
) ¥ -
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which was used in deriving the integral equation (16) from the Green’s second identity.

The unknown f(z) will be determined with the condition (14) and given by
f(@) = dan(w,0)/$a(Y;0) (21)

4. k-component

$o of equation (9) is the effect due to the wave penetration through the edge y = 0 from the water surface
side (y < 0) is significant only close to the edge. It is obtained as a solution when head seas are incident
on a slender membrane; the method is given in Ohkusu & Nanba (1996). The solution is written as

Yo(z,y, 2) = F(z)[e™™ + do(y, 2)] _ (22)

where g is a solution of an integral equation
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Gy, z : v, 2') is a wave source function not increasing exponentially at |y| — oo given by Ursell (1968).

Unknown F(z) is determined such that the outer approximation of (22) will match with the inner
approximation of the outer potential. The matching condition is:
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B ~ B _
Q=) = e [ [(wo<y,o>+1>— [ 1ot ) + 1) (25)

in those expressions f(y,y’) is the Green function similar to g(y,y’). f(y,¥') is a solution of (18) with
ka replaced by k satisfying the boundary conditions (12) at y = 0 as well as y = B with &k substituted in
ha.

5. Numerical example ' i

One example of numerical results by the present method is illustrated in Fig.1. This picture shows the de-
flection of the membrane at one time instant. Feature of the combined effect due to & and kj components
is seen. Details of numerical calculation and another results will be presented at the Workshop.
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