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1. Introduction

Density stratification occurs frequently in the open oceans. Surface or sub-surface marine vehicles can
operate in such an environment. This gives rise to some hydrodynamic problems of intrinsic interest. If
the pycnocline thickness is small, a common model is to treat the medium as a two-layer fluid. A review of
this subject indicates that existing derivations of the source potential in a two-layer fluid usually assume the
lower fluid to be infinitely deep [1-3] or upper fluid bound by a rigid lid [2]. A more recent formulation [4]
does allow each fluid layer to have finite depth but requires the density difference between the two layers to
be small. Under this latter assumption, the surface and internal wave systems are only weakly coupled. In
this paper, the translating source potential for a two-layer fluid of finite depth is derived in a form amenable
to numerical evaluation. The source is restricted, for illustration purpose, to the upper layer, but the density
difference between the two layers can be finite. Surface and internal wave patterns are computed for a density
difference large enough so that some coupling between the surface and internal wave systems exists and their
intertwined behavior is observed and illustrated.

2. Mathematical Formulation

Let’s define a rectangular coordinate system moving with a point source at a constant speed U along the
positive z-axis. The (z,y) plane of this system coincides with the undisturbed interface between the two
fluid layers, and the z-axis is positive upward. Let p;, hy and ps, hs denote the densities and depths of the
upper and lower layers, respectively. If the velocity potential in each layer is given by GU™(¢,n, (5 2, v, 2),
where (€, 1, () is the location of the source and m = 1, 2 refers to the upper and lower fluid layer, respectively,
then the governing equations for G(™)’s are

VIGW = §(z — £,y —n,2 - () VI =0 (1)

The linearized boundary conditions on the free surface z = hy, the interface z = 0, and the rigid bottom
z = —hg are:

k,GM + G — uc(Y =0 z2=hy (2)

Y(koGM + G — uGY) = koGP + G — uG® z=0 (3)
M = a» z=0 (4)

P =0 2= —hy (5)

where k, = ¢/U? and v = p;/p;. The fictitious viscosity u, introduced in the above formulation to facilitate
the satisfaction of the radiation condition, will be taken to zero in the final results. Finally, the radiation or
asymptotic condition is given by

lim VRVG'™ = o(1), lim VRVG™ = O(1). (6)
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where R = \/(z — &) + (y — n)*.
3. Solution of the Source Functions

The solutions for G{™)’s are assumed to have the following forms

GO = 1 +GW G = g )
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where 72 = (2 — €)? + (y — 7)? + (2 - ¢)? and G{™’s are some harmonic functions in their respective
domains. Using Fourier transform, represented here by the symbol F{}, we can express g((,'")(k, 8,z) =
F(GE (2,y,2)} as

Gi™ (k,8,2) = A™(k,0)e** 4+ B™ (K, g)e~** (8)
where A(™) and B(™) are unknown functions of k and . Substituting the above expression of g,(,"‘)(k, 0, 2)

into the Fourier transforms of Eqns. (2)-(5), and (7), we obtain a system of linear equations which can be

solved for A(™) and B(™)., Once A(™ and B(™) are known, gﬁ,’"’(k,o, z) can be inverted to the (z,y, z)
space, and by using Eqn. (7) again, we obtain the following expressions for the G(™)’s,

1 1 n [,
G = ~ =5 / / {2eabe™*? cosh[k(z — )] + 2a(a + vb)e™*" cosh[k(z — )] — eb?ekh=2=¢)
-mJO
ikw
+eaZe~Fr=2=0) _ p(q 4 yb)ek(d=2=¢) 4 a(va + b)e“k(d"”"o}%dkda 9)

® o ikw
¢ = 57;/ / {b(a + b)[ekr+=-0) 4 ek(d-+=0)) a(a + b)[e~Fh+=0) 4 e—k(&—z—()]}‘i&__dkdg
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where e=1-—4«

d=hy— h, h=nhy+ h,
a=k+kosec?d+ ipsech b=k —k,sec? + ipsec 6
w=(x—&)cosf+ (y—n)siné A(k,8) = 2eabcosh(kd) + b(va + b)e*" + a(a + yb)e *?

It is possible to show that if we let hy in Eqn. (9) goes to infinity, we will recover the two-layer Green
function for the case of infinitely deep lower fluid layer as given in [2]. In another scenario, G(1) and G(?) can
be reduced to the potential of a source moving in a uniform fluid of depth h by letting p; = p;. Alternatively,
G™ can be reduced to the same uniform source potential of depth h; when we take v = 0, or hy = 0. .

To obtain the final results for G{™)’s, we will now take the limit of the expressions in Eqn. (9) with u
goes to zero . The 6 integration in Eqn. (9) can be redefined to range from (—%, §) by taking advantage of

some symmetry properties of the integrand. We can therefore write Gf,m) as

(m) = A T
GI™ = lim Re /_ /0 B (k, 0)——dkds (10)

x
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where Re{} represents the real part of the complex expression inside the {}, and H(™)(k,)’s are some known
functions. The roots of the equation A = 0 are of critical importance. They are given implicitly by:

t1+t2 + (=1)" () +12)? — det1ta(1 + 7t1t2)]?
2(1+ vt1t2)

where ¢ = tanh(knhy), t2 = tanh(k,h2). The roots ky and k; can be assigned to be associated with the
surface wave mode and internal wave mode, respectively. Note that Eqn. (11) does not always yield a
solution for k, for all values of 8. A useful way of characterizing this complex relation is to define the
following two critical Froude numbers Fr; and Fry corresponds to the maximum phase velocity ¢y of the
surface wave mode and c; of the internal wave mode, respectively:

1 h1h2)%

kn = kosec? 8

— i sech, n=1,2 (11)

2 . 1 +1
Fr2 =120 = Z L (—1)

o}

2 P n=12 (12)
By definition, Fry < Fry. It can be shown that when Fr = U/\/gh > Fry, a “supercritical” case, k, does
not exist for |8| < 6, = cos™ (Fr,/Fr). By contrast, when Fr < Fry, the “subcritical” case, k, exists for
all values of 6 within the range of integration. Note that k; > ko, and as u approaches zero, both roots
approach the positive real axis from the lower half of the complex plane. The inner (k—) integral of Eqn.
(10) can now be evaluated using one of the contours as shown in Figs. 1 and 2 depending on whether w > 0
or w < 0 (see, e.g. [5]). In the limit of R — oo, the integrals along the path T'y and T'y vanish. Cauchy’s
residue theorem can be applied to yield:

kS iow 2 5 iknw
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where A’ = 9A/dk and ¢ = tan~![y/(~z)]. The integrals along T's and I's are complex conjugates of each
other and have been combined to obtain this final expression, which is amenable to numerical treatment.
Note that when Fr > Fr,, k, does not exist for all 8, and the range of integration of the single integral should

‘E)ee nlodiﬁe)d accordingly. For example, if % — % > 6, > 0, the range of integration is actually (—%,—0n) and
ny 9 = '/J .

4. Surface Waves and Internal Waves

e

The surface waves and internal waves due to a translating point source can now be calculated as follows

U
(P(z,y) = (G — 4GV

U
(W(,y) = ;G(xl) —(
ge

(14)

zzzh,y z2=0

If we restrict our analysis of the wave patterns to the far field of the source, then we only need to focus on
the single integrals in Eqn. (13). In the far field, ((™) can be written as

z
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¥ .
P™)(k,, G)e”‘"“’de} (15)

According to Eqn. (15), both surface and internal waves contain. contributions from the poles k; and ks,
where, as mentioned earlier, we associate the contribution from k; with the surface wave mode and the
contribution from k2 with the internal wave mode. The method of stationary phase can be applied to Eqn.
(15) in the usual manners. The term e'*»* can be rewritten as e!#/2(®:¥) where R = \/(z — £)2 + (y — n)2/h
and f,(6,v) = —hky cos(6 + 3). The number of stationary points of f,, depends on the values of ¢ and Fr.

When Fr < Fry, the function f, has two stationary points for ¥ < t,. Each of these can be identified
with a system of transverse or divergent waves. The half-angle of the wave pattern, 1y, increases from 19°28’
to 5 as Fr goes from zero to Fr,. This angle then decreases as sin™!(Fr,/Fr) when Fr > Fr,. Also, when
Fr > Fry, there exists only one stationary point which corresponds to the divergent waves. In this case, the
source is travelling faster than the fastest waves of the n mode, and transverse waves are not possible for this
steady-state problem. Since F'r; > F'ry, the surface and internal wave patterns can be classified into three
different regimes with respect to ¥r. When Fr < Fr,, the wave system due to each mode contains both
transverse and divergent waves. When Fr; < Fr < Fry, the wave system due to the surface wave mode still
contains both transverse and divergent waves, but the wave system due to the internal wave mode has only
divergent waves. As F'r increases past Fry, both wave systems now contain only divergent waves.

As an example, Figs. 3-8 illustrate how the surface and internal wave patterns vary as Fr increases from
a value less than F'ry to a value greater than Fry. The physical parameters are: hy/h = 0.5, v = 0.5, and
corresponding to these parameters, F'r; = 0.924 and Fr, = 0.383. The source is located in the middle of
the upper layer, i.e., (/h = 0.25. In these figures, the scales in the vertical direction are stretched for clarity,
and the scale factors are given in the captions. Also, the nondimensional {(™) is defined as ¢(™) /h. Figs. 3
and 4 show the surface and internal waves for Fr = 0.37 < Fry. In this case, both the surface and internal
wave modes contain transverse and divergent waves, and the coupling effect can be clearly seen on the free
surface where the amplitude of the surface waves due to the internal wave mode are comparable to that due
to the surface wave mode. Figs. 5 and 6 show the surface and internal waves for Fry < Fr = 0.5 < Fry.
At this Froude number, the internal wave mode only has divergent waves. The transverse waves on the
interface in Fig. 6 are due to the surface wave mode. Figs. 7 and 8 show the surface and internal waves for
Fr =1.3> Fr; > Fry. Here, only divergent waves are present since the Froude number is greater than the
critical Froude numbers of both modes. These and other features of the flow will be further discussed at the
Workshop.
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Figure 3: Surface Waves,4E4 x (1) Fr = .37

Figure 5: Surface Waves,4E4 x {(V) Fr = .5

Figure 7: Surface Waves,7E4 x (), Fr = 1.3

Figure 2: Integration Contour for w < 0

Figure 4: Internal Waves,3F4 x (,:(2),Fr = .37

Figure 6: Internal Waves,6FE4 x ((®) Fr = .5
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Figure 8: Internal Waves,3E5 x () Fr = 1.3
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DISCUSSION

Kuznetsov N.: Have you any physical explanation of phase shift for internal
waves?

Nguyen T., Yeung R.W.: The amplitudes of the surface waves and internal waves
due to the surface wave mode are in phase, but the amplitudes are 180° out-of-
phase for the internal wave mode. This situation is similar to the oscillations of two

point masses connected by linear, elastic springs and suspended in a vertical plane.
In the first mode of vibration at the natural frequency ®;, the masses move

together and their oscillations are in phase. In the second mode of vibration at
frequency ®,, the masses move in opposite directions and their displacements are

180° out-of-phase.
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