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1 Introduction

The problem of uniqueness of the frequency-domain solution to the linearised water-wave problem is
fundamental, as was recently highlighted by Ursell (1) who placed it first in his list of (at the time)
unsolved problems. A number of uniqueness results have been established for specific geometries.
In particular, John (2) proved the most widely known theorems for surface-piercing obstacles in
two and three dimensions. Simon & Ursell (8) generalised John’s 2D theorem to cover a wider
class of obstacles including totally submerged ones. The first uniqueness theorem for a 2D obstacle
separating a portion of the free surface from infinity was obtained by Kuznetsov (4). Simon &
Kuznetsov (5) generalised this result to the case of a toroidal surface-piercing body. However, there
is no general theorem giving necessary and sufficient criteria for either two- or three-dimensional
geometries. The fact that some necessary conditions must be fulfilled for uniqueness follows from
the recent achievement of M. Mclver (6) who constructed the first examples of non-uniqueness for
the two-dimensional water-wave problem. These ‘trapped modes’ were constructed from two equal-
strength wave sources placed in the free surface and positioned so that the waves radiated to each
infinity by one source are cancelled by the other. She proved that there exist families of stream-
line pairs surrounding the sources that can be interpreted as two surface-piercing structures. The
corresponding three-dimensional problem was considered by Mclver & Mclver (7) who constructed
solutions from a ring source with a vertical axis of symmetry placed in the free surface. The radius
of the ring is chosen to eliminate the radiated wave; this results in a standing-wave motion that
decays more quickly in the radial direction than any propagating wave solution. The stream surfaces
of the flow correspond to toroidal structures floating in the free surface.

The present work extends the work of McIver & Mclver (7) in two ways. First of all it is shown
that, for certain toroidal structures, uniqueness for any mode of the fluid motion may be established
over particular ranges of frequency. Secondly, trapped mode solutions are constructed numerically
for non-axisymmetric modes in the presence of an axisymmetric structure.

2 Formulation
An inviscid, incompressible fluid occupies the half-space y > 0 with Cartesian coordinates (z, y, 2)
chosen so that y = 0 corresponds to the free surface and y is directed vertically downwards. Hor-
izontal polar coordinates (r,f) are defined by z = rcos6, z = rsinf. A structure, axisymmetric
about the y axis and with submerged volume D and wetted surface S, floats in the free surface.
The fluid domain is denoted by W and the free surface by F'. The structure is toroidal in shape so
that the free surface is in two distinct parts; the outer free surface is denoted by F. and the inner
free surface of radius b is denoted by F_. The geometry is sketched in Fig. 1.

Within the framework of the linearised theory, a time-independent potential ¢ corresponding to
a trapped wave motion must satisfy

V=0 in W, (1)

the free-surface condition 96
K¢+a—=0 on F=F_UF, (2)
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Figure 1: Sketch of geometry

and the body boundary condition

o¢

— =0 S

n on S, (3)
where 9/0n indicates differentiation in a direction normal to the surface S of the structure. Here
K = w?/g, where g is the acceleration due to gravity. The radiation condition requires that ¢ and

V¢ decay at infinity in such a way that the energy of a trapped fluid motion is finite and therefore

/W|V¢|2dxdydz+/F|¢|2dxdz<oo. @

3 A uniqueness theorem
For modes of the form

¢ = ¢n(7"0a y) = (P(n)(r’ y) COS n07 n=01,..., (5)

energy arguments related to those used by John (2) and Simon & Ursell (3) may be used to obtain
the following: '

Theorem Consider the azisymmetric fluid domain W illustrated in Fig. 1 where the torus D is
strictly bounded by two vertical cylinders that intersect D at the free surface F (the so called ‘John’
condition); the inner cylinder has radius b. For a given azimuthal mode number n, suppose that for
some value of the non-dimensional frequency parameter Kb

jn,m < Kb < j;L,m+1) (6)
where jnm denotes the m-th zero of the Bessel function J, and jy, ., denotes the m-th zero of Jy,.

Ifn=0, thenm € {1,2,...}. Ifn>1, thenm € {0,1,...} with jno = 0. Then, for this value of
Kb, the boundary-value problem (1-4) has only trivial solutions in the form (5).

In other words, for toroidal geometries satisfying the John condition, the solution of the water
wave problem with azimuthal mode number n is unique provided that (6) is satisfied.

4 Trapped mode solutions
Trapped mode solutions to the problem (1-4) are sought in the form (5) where ¢(") is taken as the
potential of a ring source of radius c in the free surface. The potential for such a source (8, equation
3.10) singular on (r,y) = (c,0) is

Ra(r,y;c) = 4n?iKce XY J,(Kr)HWY (Krs)

oo . vdv 7
+ 80/0 (vcosvy — K sin Vy)In(w<)Kn(W>)m§, (7)
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where r5 = max{r, c}, r« = min{r, c}, and J,, I,, K, and HY denote standard Bessel, modified
Bessel and Hankel functions of order n. In general, at large radial distances the ring source gives
outgoing waves as a result of the Hankel function in the first term. It may be shown that the
integral term decays like 7~ as r — co. Radiating waves in r > ¢ are annulled by taking c to satisfy
Jn(Kc) = 0; that is Kc is chosen to be a zero of the Bessel function J,. Any surface in the fluid
domain that is always parallel to the local velocity may be interpreted as the surface of a structure.

The purely axisymmetric case n = 0 was considered by.Mclver & Mclver (7). It was proved us-
ing the Stokes’ stream function that for a given non-radiating ring source a family of corresponding
toroidal structures can be constructed that exclude the source from the fluid domain, thus estab-
lishing the existence of trapped mode solutions. For n > 1 no stream function is available so here
the evidence given for the existence of trapped modes is purely numerical.

On the surface of any structure it is required that there is no flow in the normal direction.
For axisymmetric structures, surfaces independent of 6 are sought in the form r = r(y) and the
condition of no flow in the direction of the local normal n may be written

dr _¢r
dy ¢y' (8)

This differential equation may be solved numerically using standard procedures. A typical calcula-
tion is given in Fig. 2 for the case of azimuthal mode number n = 1, the radius of the ring source
is chosen as its smallest possible value Kc = j;1. The figure shows typical stream surfaces; any
surface, or combination of surfaces, for which the singularity is enclosed may be interpreted as a
structural surface. It should be noted that these stream surfaces do not satisfy the John condition
required by the theory of §3.
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Figure 2: Axial plane cross section of stream surfaces for mode number n = 1. The
source position K¢ = j1,1 is marked e.

5 Discussion
Fig. 3 shows numerical calculations of the values of Kb corresponding to the intervals of existence
for trapped modes that may be constructed using a single ring source. Also shown are the intervals
for uniqueness given in (6). These intervals are complementary despite the fact that the trapped
mode solutions violate the conditions under which the uniqueness theorem was derived.

It is apparent from that there are intervals in Kb for which there may be uniqueness for all
modes (disregarding for the moment the requirement that John condition must be satisfied). For
example, for n = 1 no trapped modes have been found for Kb € (2.51, 3.05) while uniqueness of the
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Figure 3: Values of the inner radius Kb for which uniqueness has been established
( ), provided the structure satisfies the John condition, and values of Kb for
which trapped modes may be constructed (— — — — — } using a single ring source.
The integer n is the azimuthal wave number.

solution has been established in this interval for all other modes. However, it should be pointed out
that in the equivalent two-dimensional problem of two-surface piercing bodies, Linton & Kuznetsov
(9) have found evidence of modes trapped by bodies violating the John condition within the region
for which uniqueness is predicted by the theory that requires the John condition.

6 Conclusion

The uniqueness of the solution to linear water-wave problems with axisymmetric floating bodies
has been considered. Uniqueness of the solution has been established for a restricted class of body
geometries over certain ranges of frequency. Further, examples of non-uniqueness, or trapped modes,
have been constructed numerically for geometries that do not satisfy the restrictions required by the
uniqueness theorem but, nevertheless, the frequency ranges where they occur are entirely consistent
with that theorem. Further work is required to extend the uniqueness theorem to a wider class of
geometries and to explore the range of trapped mode solutions that are possible.
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DISCUSSION

Clark P.: When engineers hear about uniqueness and trapped modes they
instinctively think that these are issues of concern to mathematicians only. Could
the axisymmetric wave trap described in your paper be the basis of an effective
wave power device, where the energy in the trapped modes would be extracted
by, say, a Well's turbine? This woul be of great interest to engineers.

Mclver P., Kuznetsov N.: Resonance will occur when forcing is applied at a
trapped mode frequency. Whether the bandwidth around a trapped mode
frequency is substantially different from that for the near-resonant motions already
familiar to designers of wave-power devices is still an open question, but one that
we will investigate in the near future. There is certainly a possibility that improved
oscillating water column devices may result from this work.

Another reason the existence of pure (as opposed to leaky) trapped modes should
be of concern to engineers is because standard numerical methods will fail at, or
very close to, a trapped mode frequency.

Eatock Taylor R.: Is it significant that these bulbous shapes are not "wall-sided"
at the water line? Is the trapped modes "industry" interested in wall-sided bodies
which are concave below the water-line? Such structures can presumably
experience cancellation in the vertical wave force.

Mclver P., Kuznetsov N.: In the water-wave problem, there is still a great deal to
be understood about the circumstances under which trapped modes can occur. In
particular, it is not known whether the first examples of "open-sea" trapped modes
presented at this workshop have geometries which are in some way typical; their
particular character may be just a result of the method of construction. We
certainly cannot rule out the existence of trapped modes for the type of wall-sided
bodies you describe.
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