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Introduction. Many attempts have been made
in the past to solve the unsteady incompressible
Euler or Navier Stokes equations with full nonlin-
ear free surface description, without the assump-
tion of irrotational flow and use of the Bernoulli
type dynamic boundary condition. Unfortunately,
it seems that these methods usually have suffered
from relatively large numerical errors and especially
numerical damping, which did not allow accurate
long term simulations of travelling gravity waves,
see e.g. Tsai and Yue (1996) [4].

Here, an attempt is made to extend the applica-
tion range of free surface Euler equations, so that
unsteady wave problems can be simulated with ac-
curacies, which are comparable to those of potential
flow methods. In the present paper, the method
has been applied to travelling waves in channels
with submerged bars, and results are compared to
experimental data. Furthermore, steady currents
are introduced and wave current interaction is de-
scribed, including wave blocking conditions.

Method. The two-dimensional Euler equations,
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are solved for the Cartesian velocity u = (ug,uy)
and dynamic pressure p. The usual inviscid dy-
namic boundary conditions are imposed,

ou

Vu-n =0, (3)

7 denoting the free surface elevation and n being
the surface normal vector. The kinematic boundary
condition is expressed in terms of the local volume
flux f = u - n through the free surface
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A finite volume code employing a cell-centered
variable layout on general curvilinear grids has
been extended by the arbitrary Lagrangian Eu-
lerian (ALE) formulation [1] expressing the dis-
cretized mass and momentum balance equations on

a time-varying grid in a conservative formulation.
The elevation 7 is discretized at every grid cell face
along the free surface, and (4) is then integrated
in time by an explicit Adam Moulton third order
multistep method. An adaptive curvilinear grid is
generated algebraically and the time integration of
the fluid motion is performed by a second order
fractional step method, to some extend following
Zang et al. (1994) [5]. Assuming that solutions
for velocity and pressure exist up to time step t",
and grid and boundary conditions have been set for
t"+1 the velocity field at time ¢t**! is split into a
predictor velocity field 4* and an irrotational cor-
rection V¢, ’

u™l = u* + V. 5)
u* is updated by time-integrating to second order
the momentum equations (2)
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employing QUICK interpolation for the convective
terms. The grid velocity u, reflects the motion of
grid lines from time step n to n + 1 according to
the ALE approach. The correction V¢ is deter-
mined by restricting u"*! to satisfy the continuity
equation (1), hence
Vi = -Vu*. (7)
The pressure is computed by the divergence of the
momentum equation (2)

Vit =~V - (u - Vu)™H, )
together with boundary condition (3). While the
implicit part of the discretized momentum equa-
tion (6) is solved iteratively by either point- or line-
relaxation, the Poisson equations (7) and (8) are
solved by a standard multigrid method.
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Waves are generated by imposing second order
Stokes velocity profiles at one side of the fluid do-
main of the form

uz = (U1(y) sin(p) + U2(y) sin(2¢)),  (9)

with ¢ = wt + 0. At the opposite end both the
elevation 7 and the fluid velocity u are relaxed at
every timestep towards prescribed values, 7, and
Uyp, respectively, by following procedure

n=1-an+an, u=_1-a)u+au, (10)

a denotes a relaxation parameter, which increases
softly as the waves are entering into the numerical
sponge layer.

Results. The method has been tested for stand-
ing and travelling waves in both deep and shal-
low water. With numerical resolutions in time and
space of L/Axz >= 50 and T /At >= 50, respec-
tively, the linear dispersion relation is fulfilled to
an accuracy better than 1%. Errors in mass con-
servation can be neglected in all cases, because the
kinematic condition is expressed in terms of the lo-
cal volume flux and the discretization of the trans-
port equations is conservative. However, since in
contrast to potential flow methods, no energy equa-
tion is solved, but energy balance has to emerge
out of the numerical solution of mass and momen-
tum transport equations, the main problem are er-
rors in energy conservation. With a resolution of
L/Az = 50 and T'/At =~ 50 about 0.5% of the en-
ergy of a deep water standing wave is dissipated
during a wave period. Using L/Az =~ 50 and
T/At =~ 100 that number is decreased to about
0.1%.

The method has been used to study the propa-
gation of regular incident waves with period T =
2.02 s and height H = 0.02 m over a submerged
bar on a horizontal bottom, see Fig. 1, this test
being investigated experimentally by Luth et al.
(1994) [2]. On the upward slope the incoming waves
are shoaling, nonlinearity hereby generating bound
higher harmonics, which travel phase locked to the
primary wave. On the downward slope these har-
monics are released as free waves resulting in an
irregular wave pattern.

In the simulation waves are generated for 80 s in
fluid initially being at rest. The computed elevation
history and its Fourier transform has been com-
pared to measurements at selected locations, see
Figs. 2 and 3. On the upward slope good agreement
with measurements is found, the nonlinear shoal-
ing process being well described even with rather
coarse discretization. On the lee side of the bar fine
spatial discretization is required to resolve the re-
leased higher harmonic waves, which are otherwise

damped by numerical dissipation. However, given
sufficient discretization, the model describes phase
accurate the resulting irregular wavetrain behind
the bar.

In a channel with a submerged bar a steady cur-
rent is introduced by modifying the sponge layer
and the wave generating boundary condition, see
Fig. 4. The local Froude number on top of the bar
takes valiies of about Fr ~ 0.4. Waves of height
H = 0.005 m and with periods T =2sand T =1
s, respectively, are generated during 100 s and prop-
agate against the mean flow direction. In the case,
T = 2 s waves travel in close agreement with linear
theory with regard to amplitude and wave number,
almost recovering to their initial shape after the
bar, see Fig. 5.

In the case of T' = 1 s, however, waves are blocked
on the upward slope, since the current velocity ex-
ceeds the group velocity of the wave. The blocking
point agrees precisely to the location estimated by
linear wave theory. In order to resolve more closely
the blocking process, discretization is refined to
At = 0.005 s and Az =~ 0.01 m around the block-
ing point and waves with initial heights of both
H =0.001 m and H = 0.005 m are generated. The
elevation profile clearly shows the incoming wave to
be superposed by short reflected waves, with wave-
length being shortened with increasing depth and
dissipated by numerical damping, see Fig. 6.

Integral mass and energy equations can be solved
to estimate the mean velocity U and the mean ele-
vation 7, as function of the horizontal position z.
The expression for the apparent frequency

oc=w+kU, o=2n/T, (11)

can then be solved together with the linear disper-
sion relation,

w? = gktanh k(h + n,,), (12)

having two solutions for k, the smaller k; being the
wave number of the Doppler shifted incident wave,
and the greater k, being the wave number of the
reflected wave, if blocking occurs, see e.g. [3].

By identifying the wave crests in the computed
elevation profile n(z), or the vertical fluid veloc-
ity uy(z), respectively, the wave number of the re-
flected wave is estimated as function of z, see Fig. 8.
The estimated wave numbers are seen to be scat-
tered, but found in average to follow quite closely
the theoretical estimate. The scattering increases
with the increasing initial height of the generated
wave, and seems to be due to the Doppler shift,
by which the incident waves influence the shorter
reflected waves.

Conclusion A finite volume code employing a
modified fractional step method has been applied to
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unsteady, incompressible free-surface flow. The nu-
merical damping characteristics are not good com-
pared to state of the art potential flow methods
using equivalent resolution in time and space. How-
ever, the numerical accuracy in the present method
is sufficiently good to allow phase-accurate simu-
lation of nonlinear 2D waves within O(100) wave
lengths or wave periods, which we believe is an im-
provement compared to results in the past. Both
steady and non steady rotational currents can be
introduced directly, the example of wave blocking
being a demonstration of the special capabilities of
the present method.

The method is intended to be a supplement for
investigation of interaction of wave motion with
other processes as wave-current interaction, inter-
action with laminar and turbulent bottom bound-
ary layers, etc. Finally, we believe that the present
method is a good basis on which models describing
the effect of wave breaking on wave driven currents,
turbulence, etc., can be developed.
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Figure 1: Wave Flume with submerged bar on hor-
izontal bottom. Waves are generated with inital
height H = 0.02 m and period T' = 2.02 s.
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Figure 2: Surface elevations as funtion of time of
waves propagating over submerged bar, see Fig. 1.
(a) z = 13.5 m (top of bar), (b) z = 21 m, (behind
bar). (o) meas., Luth et al. (1994), () comp.,
Az = 0.015 m, At = 0.01 s, (- - - -) comp., Az =
0.03 m, At = 0.02 8, (- - --) comp., Az = 0.06 m,
At =0.04 s.
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Figure 3: Propagation of regular waves over a sub-
merged bar, see Fig. 1. (a-d) Amplitudes of 1% to
4tk harmonic, respectively, as function of x-location
along the channel. (o) measurements by Luth et al.
(1994), (-—-) Az = 0.015 m, At =0.01s, (- - - -)
Az =0.03 m, At = 0.02 s, (- -- --) Az = 0.06 m,
At =0.04s.
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Figure 4: Wave Flume with submerged bar on hor- (b
izontal bottom for studying wave current interac- ;
tion.

CYR. . ‘ . ‘ Figure 7: Fluid domain and velocity vectors around
= 000f blocking point of waves with period " = 1 s and ini-
3 oot W ] tial height H = 0.005 m propagating against steady
® 002 | 1 current, see Fig. 4. (a) t = 95.00s, (b) ¢ = 95.507 s.
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Figure 5: Propagation of waves over a submerged
bar with opposing current, see Fig. 4. Elevation
profiles at 5 phases within a period at ¢ = 95 s. E
Initial wave height, H = 0.005 m, and current U, = M
0.1 m/s at 0.4 m depth. (a) Wave period T =
2 s. (b) Wave period T' = 1s. (- - - -) envelope
according to linear wave theory.
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x(m) (a) initial wave height H = 0.001 m, (b) initial
wave height H = 0.005 m. (o) estimate based on
surface elevation, (-) estimate based on vertical sur-
face velocity, (----) theoretical value based on (11)
and (12).

Figure 6: Wave with period T = 1 s and initial
height H = 0.001 m propagating against steady
current, see Fig. 4. (a) Elevation at t = 95 s. (b)
Elevation profiles at 10 phases within a period bew-
teen t = 95 s and t = 96 s.
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DISCUSSION

Borthwick A.: Is the algebraically generated curvilinear grid essentially the same
as a sigma transformed mesh? If so, could not additional savings in computer time
be gained by using the sigma transformed approach given that the mapped
equations would be simpler?

Mayer S.: Since the code is derived from a general purpose CFD code, the Finite
Volume discretization scheme is implemented for general non-orthogonal grids,
including cross derivative terms in both the interior of the grid and along grid
boundaries.

However, the automatic grid generation algorithms used in the present work are
almost equivalent with the use of sigma transformed meshes, since the considered
geometries are simple and, in particular, the channel side walls are vertical. In
general, both memory requirement and CPU-consumption could probably be
reduced quite a lot, if our algorithm would be written specifically for the numerical
wave flume application. This is not only due to the possible simplification of grid
generation and discretization schemes, but also because the solution algorithm for
the algebraic equation systems could take advantage of the simple grid structure.

Schultz W.W.: Does most of your numerical dissipation come from the Euler
prediction step or the potential correction step?

Mayer S.: Generally, most numerical damping comes from the predictor step, in
particular, from the QUICK upwind schemes, which we employ for the convective
terms. Additionally, some dissipation is introduced in the spatial discretization of
the kinematic boundary condition. For time steps, used here, the dissipation due to
the potential correction is negligible. (However, for very small timesteps - 1000
time steps or more per wave period - it may become significant).
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