Higher order wave diffraction of water waves
by an array of vertical circular cylinders

Sime MALENICA
Bureau Veritas - CRD, 10 rue Jacques Daguerre
92565 Rueil Malmaison, FRANCE

It is well known that the wave forces exerted on a multicolumn offshore structure (TLP, semi-sub, GBS, ...) can
be seriously affected by the effects of interaction between cylinders. The calculation of forces by simply sum-
ming the forces for isolated cylinders is usually wrong. As far as the linear theory is considered, there exist
today numerous numerical models which calculate these interaction effects correctly. However, at second order
there is only few of them and the calculations involved are very time consuming. That is the reason why some
authors try to seek for semianalytical solutions, in idealized configurations, which are considerably less expen-
sive and more precise. At first order, this was done by different authors but the most complete methodology was
presented in [2]. At second order there are two approachs recently proposed [3,5]. Even if these two methods are
similar there are some important differences in the methodology and in the numerical implementation. The pur-
pose of this paper is to discuss more in detail the method proposed in [3] and to give some clarifications about
the numerical implementation which has to be adopted in order to-support eventual third order calculations.

General methodology

The main difficulty associated with higher order problems is the treatement of the free surface integral which is
involved in the solution. The free surface condition, which is the main difficulty of the problem, at higher order
is given by : :
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and use of any method involves the evaluation of an integral over the entire free surface in order to take account
for the forcing term Q. The method that we use to solve this problem is the combination of the Linton and
Evans method [2] for first order diffraction for an array of vertical cylinders, and the semi-analytical solution for
the second order diffraction by a single cylinder [1,4].

All notations correspond to the following configuration :

Y

Figure 1. Basic configuration.
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The well known Green’s identity for one point outside of the fluid domain, can be written (for the sake of clarity
we consider homogeneous Neuman boundary condition on the body) :
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where  is the higher order potential, Q is its forcing term on the free surface and G is the Green function which,
in the coordinate system of the k-th cylinder, can be written as :
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We develop now the potential on the k-th cylinder in the eigenfunction expansion as follows :
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After writing the equation (2) for one point inside the cylinder k—(r,=a,—8 , 0<8<a;) , carrying out the integra-
tion by {, using the orthogonality of the functions f,(z), using the Graff’s addition theorem for Bessel functions,
exploiting the orthogonality of the functions ¢™® and rearranging the different terms we obtain for the part asso-
ciated with the B, coefficients :
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This expression represent the final system of equations for the unknown coefficients Bt
Similarly the expression for the coefficients Bk, can be obtained :
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Second order diffraction
The main difficulty in solving the above equations is the evaluation of the free surface integrals which should

exclude the cylinder surfaces. In order to minimize the 2D integration the following procedure can be adopted
for 4 equaly spaced cylinders :
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Figure 2. Differents ;egions for integration.
We recall the first order solution [2] :
o = __.fé’éf ) - imm2-B) y (x » im8o . - ¥ Ak 75 H im6y f
1= Joz e m(koro)e ; op —fo(z)kZ 2 ApZpHy(kore ®
m=—o0 =] m=oo
and the expression for the forcing term Q in the second order diffraction problem :
10) 1)

0B = 55 BV=kE) 0000+ 201001+~ = (Voo Vot +2Vot: Votp) ©

Using the Graff’s theorem we can write the first order diffraction potential ¢, in the global coordinate system
X,Y) i.e. in terms of (r(,0p) :
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This allows us to write the forcing term Q% in the form (in the regions r¢<R, and ro>R, ) :
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At the same time we write the term H,,(xgpy)e —im [ eqn. (6) ] in terms of (pg.y) [similar procedure apply for
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The free surface integral in (6) is now divided into three parts :
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where S is the surface between R, and R, without cylinder surfaces.
In the first and third integral, the integration by v can be carried out explicitely :
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In this way we reduced the 2D integration to 1D and, in the same time, the most difficult integral (from R, to o)
is put in the same form as in the single cylinder case and the same method can be used for its evaluation. So the
only "real" 2D integral evaluation needed is over the surface S, and since this surface is relatively small, this
integration can be done with little computational effort.

Knowing the second order potential on the surfaces of the cylinders, the second order potential at any point in
the fluid can be calculated by using the Green’s theorem :
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The reduction to the global coordinate system (r(,60y), in the free surface integral, can again be very useful-;
What about third order ?

The task seems to be very difficuit, but not hopeless. If we are interested only in the forces we can use the well
known Haskind relations to avoid the explicit calculation of the third order potential :
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where F 53) is the part of the third order forces induced by the third order diffraction potential v, v is the
third order incident potential, ¢; is the assisting radiation potential and Q% is the third order forcing term [4].
The main problem in the evaluation of this forces is the calculation of the free surface integral which requires
the knowledge of the second order potential and some of its derivatives over the entire free surface. Even if the
expression (18) can be used directly for the calculation of the potential y{?, some important numerical problems
(treatement of the logaritmic singularity at the free surface, calculation of the derivatives, problems of conver-
gence, ...) should be solved, and this is a rather complicated task.
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