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Abstract

Using the CFD code EOLE, described in [3], numerical computations of steady waves around a par-
tially immersed vertical lens-shaped mast have been done. These computations were realized using a
“Volume of Fluid” method coupled with the Euler or Reynolds-averaged Navier-Stokes equations. The
V.O.F. technique is often used to modelize unsteady phenomena. In [3], this technique was adapted
to treat steady problems as non-linear waves induced by a submerged hydrofoil placed in a uniform
flow. The purpose of this paper is to expose the way the V.O.F method was extended to compute
fluid flows in body fitted grids, and to highlight the interesting features of this method applied to a
strong non linear wave pattern around a 3D lens-shaped mast.

1 Introduction

Nowadays, as shown in [5], two major groups of methods are used to determine the wave resistance
of structures moving at a constant speed. First, potential methods, based on a Dawson technique
are more and more used by shipyards or tank facilities as industrial tools. However, the limits of the
potential theory do not allow to treat viscous interactions, nor high non linear free surface. Therefore,
important attention is payed to implement free surface algorithm in general Navier-Stokes or Euler
solvers. A common feature of these methods is to follow the free surface evolutions by mean of
mesh deformation. As the general evolution of ship goes to high speed vehicule, this method may
be unadapted to deal with bow waves where wave breaking occur or whith transom stern flows. In
the EOLE code , developed since 1990, the resolution of Euler or Navier-Stokes equations is coupled
with the “Volume of Fluid” method for the tracking of the interface. This technique is very efficient
for very complicated free surface unsteady phenomena like jets, bubble collapse, sloshing, cavitation.
It is expected that this method may be used efficiently for steady problems like the wave resistance
one. The algorithm, initialy developed for unsteady flows has been adapted to steady problems and
its application in curvilinear coordinates is presented. A first serie of results around a vertical lens-
shaped mast moving at Froude numbers between 0.4 and 1.2 is presented, and shows the interest of
the method.

2 Theory

The steady Euler equations for incompressible fluids are solved using a pseudo-compressibility method
[2]. This is an iterative method which consists in introducing derivatives with respect to a fictitious
time called pseudo-time 7, into the continuity and the momentum equations as follows :
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Where g is a pseudo-density, p the fluid density, @ the fluid velocity, p the pressure and I the identity
tensor. This system is closed using a relation linking the pressure and the pseudo-density and called
pseudo-law of state : p = G(p). The steady solution is obtain as the asymptotic limit of the pseudo-
transient solution of this pseudo-unsteady system (PUS) when the pseudo-time goes toward infinity.
The main features of the numerical method for pseudo-time integration are a finite-volume method
based on a space-centered scheme, second and fourth order artificial viscosity terms, five stages Runge-
Kutta pseudo-time stepping and implicit residual smoothing.
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2.1 Steady VOF method

The V.O.F. method implemented in the EOLE code is based on the technique, previously proposed
by Hirt and Nichols [4]. The fraction of fluid in each cell of the discretization mesh is represented
by a function F' whose value can vary from zero to one while the cell is respectively empty or full of
fluid. The free surface is contained by the cells with F' values between zero and one. For a steady
problem, the evolution of the F' field is governed by the following transport equation in which the
time is replaced by the pseudo-time 7 :
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where (z,y, 2) is the cartesian system, (u, v, w) the cartesian components of the velocity. The evolution
of the F' function is made from fluxes calculations (based on ”donor-acceptor method” [4]) through all
the faces of each cell. This algorithm is implemented in curvilinear system (£,7,¢) via a coordinates
transformation of jacobian J = %(%. The last equation (1), for a cell Q (of faces §Q¢+, 6Q¢-, 6Q,+,

0Q,-, 6Q¢+, 62— and volume Vj) in the new coordinates system (&,7,¢) is given by :
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where f(&,7n,(,7) is a continue fonction defined at each point (£,7,(, 7) of the fluid domaine and whose
values are contained between 0 and 1. 4, ¥ and @ are the modified contravariant velocity components
which can be expressed as follow :
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where J is the jacobian of the coordinates transformation estimated at each face of the cell. For
example at the face 6Q¢+ :

HdS = %é;ﬁﬁgdndg

where 7 dS is the normal vector of the face in the cartesian coordinates. The expression for the
calculation of the fluxes originaly proposed by Hirt and Nichols [4] is now written, in the curvilinear
system, as follow :

AF = min(Fap|U|AT + CF,FpVy) with CF = max|(1 — Fap)|U|A7 — (1 — Fp)Vq,0]

where 4 and Fp are the volumes of fluid contained in the “acceptor” and the “donor” cell respectively
(see figure 1). Fiap can be both Fs or Fp depending of the mode “donor” or “acceptor” determined
by the slope of the free surface which is calculated in the curvilinear system using the gradient of the
V.O.F. The “acceptor” mode is adapted to the case of a free surface moving parallel to its normal
vector, and the “donnor” mode is adapted to the case of a free surface moving perpendicular to its
normal vector. Writing all the V.O.F. algorithm in curvilinear coordinates allow fluid computations
to be realized in body-fitted grids.
As the scheme used to discretize the previous equation (2) is explicit in pseudo-time, a CF'L criteria
is added to the one of the conservative equations (continuity and momentum equations) to force the
free surface not move throught more than a part of a cell during a pseudo-time step :
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where z; and U; are respectively z, y, z and u, v, w for j = 1,2,3. The pseudo-time step value is

determined by taking the minimum value between the one given by the previous relation and the value
calculated with the CF'L criteria on the conservative equations.
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3 Numerical results

Some numerical results about the wave generation induced by a 3D lens-shaped vertical mast (length :
0.3375 m and maximum thickness : 0.045 m) partially immersed (0.4 m) are presented. Computations
were realized for several values of the Froude number from 0.4 to 1.4 in order to observe the evolution
of the wave resistance, and to make comparisons with existing results. On figure (2) the values of the
wave resistance obtained using EOLE, are compared with the ones measured during the experiments
(performed at “Ecole Centrale de Nantes” [1]) and those computed with the Dawson method (REVA
code, potential linear and non linear theory) by Delhommean et al [1]. At intermediate values of the
Froude Number (between 0.4 and 1) EOLE’s results are closer to the experimental ones than those
given by the REVA code. The better representation of the non-linear free surface arround the body is
the explanation. For higher values of the Froude number (between 1 and 1.4) the wave resistance values
of both codes are in agreement with the experiments because the free surface deformation along the
body is smoother. For the free surface location, the experiments show that breaking appears when the
Froude number value is larger than 0.5. Such phenomenon can be qualitatively represented by steady
Volume of Fluid computations. On figures 3, 4 and 5, the free surface position along the body and the
plane of symmetry obtained with EOLE are compared to the one given by REVA for the values of the
Froude number equal to 0.4, 0.6 and 1 respectively. Note that the free surface calculated by the V.O.F.
method is represented by the line V.O.F. = 0.5, using the post-prossessing logiciel Tecplot (Amtec
Engineering, Inc.). A more precise representation should be preferable. The extrema computed with
EOLE have a larger amplitude than the ones given by REVA but their locations along the body are
in agreement with each other. As the pseudo-time is a non-physical iterative variable, the free surface
instabilities (like droplets) appearing on the figures (4) and (5) give qualitative informations about the
breaking (for example the Froude number of transition), but can not represent the unsteady evolution
of the interface. To be more accurate in representing such phenomenon some unsteady computations
can be performed, but they need more CPU time. The calculations presented here, were done on
half a domain (because of symmetry reasons) discretized by a 230000 cells mesh on 2000 pseudo-time
iterations. This kind of computations have been realized on a Digital DEC ALPHA 600/266 station
(428 SPECIp92) in 37 hours. :

All the results presented here, show the ability of the V.O.F. method to describe non linear free surface
phenomena. Further developments, especially to improve the representation of the free surface, will
be carried on.

4 Acknowledgments

The authors wish to thanks the “Direction de la REcherche et de la Technologie” (DGA/DRET),
Research Agency of Ministery of Defense, which is supporting this work.

References

[1] G. Delhommeau, C. Couchman, L. Jeannaud, H. Doyer, “Etude théorique et numérique des
non linéarités dans les problémes d’écoulement stationnaires ¢ surface libre et validation experimentale.”
Contrat DRET 92/142, Rapport de synthése finale, 1994.

[2] C. de Jouétte, “Développement d’'une méthode de pseudo compressibilité pour le calcul des écoulements
de fluide incompressible - Applications auz écoulements instationnaires en présence d’une surface libre.”
These de doctorat, Université de Nice - Sophia Antipolis, 12 décembre 1994.

[3] C. de Jouétte, J.M. Le Gouez, O. Put (Laget), S. Rigaud, “Volume of Fluid Method (VOF)
Applied to Non-Linear Wave Problems on Body-Fitted Grids.” 11th International Workshop on Water
Waves and Floating Bodies, Hamburg, Germany, 17-20 March 1996.

[4] C.W. Hirt and B.D. Nichols, “Volume of fluid (VOF) method for the dynamics of free boundaries.”
J. of Computational Physics, vol. 39, pp. 201-225,1981.

[5] Proceedings of C.F.D. Workshop, Tokyo, Japan, 1994.

145




DONOR CELL ~ ACCEPTOR CELL 0os0 7
A

UAT
A\ /L N —

REVA (Non linear) |

T
\y,' wwwg@-=-~ REVA (Linear)

-0.040 " EOLE B
0.050 ‘\ + {
0.080 % |

b TRANSMITTED FLUX o8 * Aschen ) " *

Figure 1: V.O.F. method : donor and acceptor Figure 4: Lens-shaped mast : free surface eleva-

cells. tion F'n = 0.6.
Lens-shaped mast Fn=1.0
" [] I | i 0.080
1 ! 1 : 0.050
8 ——w——— REVA (Nonlinear)
12 ] H
i A REVA Non Linear 0.040 NII\ TTmonm- I;VLQ Qinear)
* REVA Linear
10 ®  EoLE E g 0000 r[ ‘
9 y £ o020 alh A
§ s 4 § 2 b-
i - j o : oy
T ¥ o000 y‘ﬂ \ﬁ o,""‘
5 * ‘g 0.010 % !
4 £ * 0.020 \V al l'l
. , * Y 1
2 L 0.030
b L1 0.040 . W s .
03 04 05 08 07 08 08 10 11 12 s 0.0 05 1.0 18
Froude number Asclssa (m)

Figure 2: Lens-shaped mast : wave resistance co- Figure 5: Lens-shaped mast : free surface eleva-
efficients. tion F'n = 1.

Fn=0.4
0.040
——a—— REVA (Non linean)
0.030 A wua0ana REVA (Linear) -
\ EOLE

°
a
8

=8|

/

Free surface location (m)
° o
©
5
°‘</
"]
Lo~~
o
QE

==

0010

A

-0.020
-05 0.0 05 19 15

Asclssa (m)

Figure 6: Lens-shaped mast : wave pattern F'n =

Figure 3: Lens-shaped mast : free surface eleva- 0.6
tion F'n = 0.4.
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