Capillary ripples on standing water waves
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The dynamics of capillary-gravity standing waves strongly impact remote sensing. Satellite images
obtained by SAR (Synthetic Aperture Radar) exhibit brighter radar returns near ocean features such
as currents, shelves, and slicks. The backscatter of microwaves by these surface features is sensitive to
the curvature and periodicity of the sea surface on centimeter scales. Dynamics of wave reflection in
these regions and hence the dynamics of standing waves are critical in interpreting SAR images. Jiang et
al. (1996) generated Faraday waves in laboratory experiments and compared to fully-nonlinear numerical
simulations. New dynamics of harmonic interaction and interesting steep waves were discovered. In
particular, triply-periodic breaking are discussed in Jiang et al. (1997). Herein, we present results on
even shorter wavelengths, 2 cm to 15 ¢cm, and on the formation of superharmonic waves (ripples) in the
ensuing wave forms.

Numerical methods and experimental techniques

The flow is assumed to be irrotational, spatially periodic, and infinitely deep. Capillary number k =ok?/pg
represents the effect of surface tension, where o is the surface tension, k is the wavenumber, p is the water
density, and g is the gravitational acceleration. The fully-nonlinear free surface problem is solved by a
spectral Cauchy-integral method, based on the kernel desingularization of Roberts (1983). As shown in
Schultz et al. (1994), this method gives exponentially accurate solutions. When vertical forcing is provided,
a term proportional to ¢, is added to the dynamic free surface condition to simulate the free-surface
boundary-layer damping and to provide an energy sink to balance the wave forcing,.

The standing wave excited by vertical oscillation (Faraday resonance) is subharmonic (Benjamin &
Ursell 1954). Herein Faraday resonance is used as a “clean” experimental method to generate two-
dimensional steep standing waves. We use a rectangular glass tank 105 mm long and 300 mm deep.
The testing water depth is 150 mm in the experiments. An aspect ratio of 6.2: 1 in the third dimen-
sion is chosen to eliminate cross waves and maintain a two-dimensional wave field. The wave profile is
recorded with a laser-sheet technique and a high-speed intensified imager/recorder. The vertical oscillation
is provided by a mechanical shaker with computer control.

Parasitic ripple generation

We first validate our numerical method by calculating parasitic ripple formation on the forward face of
traveling gravity waves (Cox 1958, Longuet-Higgins 1963). A linear Stokes wave is used as the initial
condition with wavelengths of 6.5 cm (x =0.07) and 5 cm (k =0.119). The wave first becomes spatially
asymmetric with the crest tilting forward (wave steepness ka=0.20). Then larger curvature is found on the
forward face and ripples are excited after one wave period, as shown in figure 1. The number of ripples
and their large steepness agree with the experiments by Perlin et al. (1993) and the viscous simulation of
Dommermuth (1994). These computations prove that neither viscous damping nor vorticity is required for
the ripple formation, even though damping may be needed to describe the subsequent evolution of these
parasitic ripples and the underlying vortex structure (Longuet-Higgins 1992, Mui & Dommermuth 1995).
Demonstrating ripple formation requres only 64 free-surface nodes per wave length in our computation;
much more efficient than Dommermuth’s full-field computation.

Ripple formation can be interpreted as higher-order resonance between the fundamental mode and
its superharmonics at critical capillary numbers k =1/N (Wilton 1915) where N is an integer. Longuet-
Higgins (1963) explained parasitic ripples on a traveling wave as the result of a capillarity-induced pressure
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disturbance at the wave crest, analogous to ripple generation on a steady stream. Because the group
velocity for capillary waves is faster than the phase velocity of the underlying wave, the ripples appear
on the front face of the wave crest. Ripple formation cannot be confirmed by Longuet-Higgins’ theory for
standing waves, as the standing wave is unsteady and the background flow can no longer be transformed
into a steady stream. However, the high-order resonance condition: £ =1/N should be equally valid for
traveling waves and standing waves, therefore predicting ripple formation on standing waves.

Our numerical simulation for free standing waves uses a high-order gravity standing wave solution as
the initial condition. A large-amplitude 6.5-cm wave (ka=0.57) evolves into a waveform with many ripples
on the surface. Shown in figure 2, the number of ripples is about 15 (= 1/k). The ripple growth can be
explained in terms of interaction between short waves and a long wave as follows: Curvature variations first
appear at the crest during its ascending phase. When the crest motion reverses, small ripples are carried
by the orbital velocity of the underlying wave to the two troughs with their wavelength stretched and their
steepness reduced. Because capillary waves propagate faster, these ripples reach the two troughs before
the orbital velocity reverses. The ripples then encounter an opposing velocity field and are shortened and
steepened. This intermitient growth occurs within one half wave cycle. Compared to traveling waves, the
ripple growth is slower and the average ripple steepness is much smaller, although the initial wave steepness
is three times larger. The ripples are generally shorter and steeper at the trough of a standing wave (figure
2b), in contrast to the behavior of short waves on a long traveling wave.

In reality, water waves are accompanied by a free-surface boundary layer that provides a viscous
damping proportional to the square of wavenumber. The higher harmonics experience much larger damping
than the fundamental harmonic. Therefore, the already weak parasitic ripples can be suppressed by viscous
damping. We model both vertical forcing (acceleration) and viscous damping (¢, term) to simulate
Faraday waves. A periodic wave solution is achieved with the same wave steepness and the same « as
shown in figure 2. However, due to the viscous damping, ripples form and decay quickly before significant
ripple steepness is reached.

Using Faraday resonance, we generate 10.5-cm Faraday waves (k=0.0265) in laboratory experiments.
These waves reach a maximum steepness of ka=1.32 with a rounded crest and very steep slope without
parasitic ripples (figure 3). This large wave steepness and the corresponding wave profile agree with the
calculations of Schultz & Vanden-Broeck (1990) for free standing waves. More extensive experiments on
wavelengths from 5 cm to 10 cm are required to further confirm our numerical findings on the parasitic
ripples and the effect of viscous damping.

Wilton ripples under Faraday resonance

Internal resonance occurs at the critical capillary number k =1/N, leading to the existence of a family of
solutions (Wilton ripples). Only limited modes participate in the resonance when N is a small integer.
Generalized Wilton ripples are usually referred to as triad interactions (Perlin et al. 1990). For standing
waves with kK =1/2, two solutions are found for moderate wave amplitude by Vanden-Broeck (1984). Both
the first and the second harmonics are retained at first order in his analysis. However, such solutions are
limited by the weakly-nonlinear assumption, leaving the behavior of capillary-gravity standing waves at
large wave steepness unexplored.

We calculate standing waves generated by Faraday resonance at these critical capillary numbers. The
wavelength is fixed at 2.44 cm (k= 1/2). With small forcing amplitude, we obtain a periodic wave with
low wave steepness (ka=0.06) in figure 4(a). Either one crest or two crests appear at different phases of
a wave cycle, similar to the two solutions of Vanden-Broeck (1984). As we increase the forcing amplitude
and therefore increase the wave steepness to ka=0.35 (figure 4b), three or four crests appear in the wave
profile at different phases of a periodic wave cycle. A frequency spectrum of wave elevation demonstrates
that the second, the third, and the fourth harmonics are equally significant (the fundamental harmonic
is 9.8 Hz). This behavior is not described by the two-mode model of Henderson & Miles (1991) for 2:1
resonance in Faraday waves.

The appearance of higher harmonics is even more evident for k=1/3. With a fixed forcing amplitude
and forcing frequency in our numerical calculations, shorter and shorter ripples appear in a cascade on the
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free surface, and a periodic state is never reached. If the forcing frequency is slightly different from twice
the linear natural frequency, we observe quasi-periodic and chaotic motions in the surface elevation. The
cascade to higher wavenumbers eventually leads to a wavelength on the scale of the node spacing and our
computation fails.

This proliferation of superharmonics for capillary-gravity waves appears to be not studied in detail in
the literature. Perlin & Ting (1992) noted multiple crests in traveling Wilton ripples directed excited by

a wavemaker. The importance of small-scale wave forms to remote sensing applications warrants a more
in-depth study of these phenomena.

This research was supported by the Office of Naval Research partially under contract number N00014-
93-1-0867 and partially under the University Research Initiative Ocean Surface Processes and Remote
Sensing at the University of Michigan, contract number N00014-92-J-1650.
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Figure 1: Calculated parasitic ripples on traveling wave (ka=0.20) with wavelengths (a) 5 cm, (b) 6.5 cm
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Figure 2: Calculated 6.5-cm standing wave (ka=0.57) with parasitic ripples, (a) elevation, (b) curvature.

Figure 3: Laser-sheet image of steep (ka=1.23) Faraday wave of 10.5-cm wavelength.
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Figure 4: Calculated Faraday wave at different phases of the wave period T for k = 1/2 (wavelength:
2.44 cm). (a) ka=0.06, forcing amplitude: 0.045 mm; (b) ka=0.35, forcing amplitude: 0.12 mm.
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DISCUSSION

Grilli S.: You mentioned that to model laboratory experiments, you used a ¢,
damping term. Would this be also applicable to.the real ocean?

Jiang L., Schultz W., Perlin M.: We use the ¢,, damping term to model open
ocean where free-surface boundary layer is the dominant source of dissipation.
Damping measured in laboratory experiments is dominated by the sidewall
boundary layer and contact-line damping. A good model that consider all these
effects has not yet been found.

Wu T.Y.: Taylor seems to have objected to the 90-degree conjecture.

Jiang L., Schultz W,, Perlin M.: Yes, Taylor (1953) questioned the derivations
for the 90-degree conjecture, even though he did not say the conjecture was
wrong. However, his experiments did not disapprove the conjecture. We have
found a crest angle smaller than 90 degrees in calculation. In the experiments
where period-tripled breaking occurs, the sharp-crest mode has a crest angle much
less than 90 degrees.
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