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Introduction

Dispersion (wavelength error) and damping (amplitude error) have been investigated analytically for
two Rankine-source panel methods in two dimensions. The flow is assumed steady incompressible
and the Kelvin free-surface boundary condition is applied. The first method uses an upwind four-
point operator (Dawson operator) on the free-surface for the velocity derivative in the streamwise
direction and to enforce the radiation condition ( Kim, K. J. 1989 ) and ( Janson, C. E. 1996A ),
while the second method uses an analytical expression for the velocity derivative together with a col-
location point shift one panel length upstream to satisfy the radiation condition (Jensen, P. S. 1987),
(Jensen, G., et. al 1988 ), ( Kim, B. K. 1990 ) and ( Janson, C. E. 1996A ). Both first order panels
(flat panels, constant source strength) and higher order panels (parabolic panels, linearly varying
source strength) have been investigated for the first method while the analysis is restricted to first
order panels for the analytical method. The source panels are allowed to be positioned either on the
free-surface (standard method) or at a distance above the free-surface (raised panel method). The
collocation points on the free-surface may be located at the same longitudinal position as the panel
centres (standard method) or they may be shifted upstream relative to the panel centres.

The two methods have also been compared numerically for a three-dimensional flow using the Series
60 CB=0.60 hull to verify the conclusions from the two-dimensional analysis. A grid dependence
study for the free-surface was performed for non-linear computations and the grid convergence is
compared for the wave profile at a longitudinal cut. The residual of the free-surface boundary condi-
tion is also compared for the two methods. '

Analysis of Dispersion and Damping

Numerical dispersion and numerical damping occur when-the continuous potential flow problem is
discretized in a numerical method. Both the discretization of the free-surface source distribution and
the introduction of numerical operators to compute the velocity derivative in the free-surface bound-
ary condition introduce errors to the method. A systematic methodology for this type of analysis is
described in detail in ( Sclavounos, P. D. and Nakos, D. E. 1988 ) and in ( Raven, H. C. 1996 ) and it
is used for the present analysis. The method investigates the properties of the numerical method after
transformation to the Fourier space. .

A two-dimensional continuous source distribution is assumed at a distance Zg above the undisturbed

free-surface level and the Fourier transforms of the induced velocity and velocity derivative at a
point on the undisturbed free-surface due to the source distribution are introduced into the Kelvin
free-surface boundary condition. The Kelvin free-surface boundary condition can then be formulated
to include an operator that relates the induced vertical velocity on the free-surface to the right hand
side of the equation which is assumed to be known.

125




The source distribution is for the first order numerical method discretized into flat panels of uniform
size Ax having a constant source strength and the velocity derivative in the streamwise direction is
computed using an upwind four-point numerical operator. The source panels are located a distance

Zg, = OAx above the undisturbed free-surface level and all collocation point are allowed to be

shifted a distance YAx upstream of the panel centres. The Fourier transform of the induced velocities
at a collocation point on the free-surface and the Fourier transform of the four-point operator are

introduced into the Kelvin free-surface boundary conditiori’and as in the continuous case an operator
for the vertical velocity can be formulated.

For the first order analytical method the Fourier transform of the analytical expression for the veloc-
ity derivative in the streamwise direction replaces the Fourier transform of the four-point numerical
operator in the Kelvin condition and an operator for the vertical velocity can again be formulated.

The operator for the higher order numerical method is similar to the first order numerical method but
it includes contributions from the curvature of the panel and from the linear source variation.

The dispersion and damping for the discretized method can now be investigated from plbts of the

real and imaginary parts of a function LA (s) which is included in the non-dimensionalized form of
the operator for the vertical velocity. The difference between the operators for the discretized meth-
ods and the operator for the continuous source distribution is shown as the difference between the

non-dimensional wave number s and the function LA () . The principle for the analysis is sHown in
figure 1A where on the abscissa s = 0 means an infinite number of panels per wavelength and
s = 0.5 means two panels per wavelength. The intersection between a horizontal line
1/ (2w - Fn Az) where Fn, is the panel Froude number and the real part of the function Lk (s)

gives the principal far-field wave number found by the discretized method and the difference
between this wave number and s gives the dispersion for the method. The intersection between the

imaginary part of Lh (s) and a vertical line at the principal far-field wave number indicates the
damping of the discretized method. A spurious wave numbers may in some cases be found by the

discretized method if a second intersection between the real part of Lk (s) and the horizontal line
exists.

A: Principle for the analysis B: Four-point operator, Y=0.25, a.=0.0, 0.5, 1.0, 2.0
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Figure 1 Interpretation of the real and imaginary parts of LA (s)
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Different positions of the source panels and the collocations points were investigated and as one
example figure 1B shows the influence of the distance between the source panels and the free-sur-
face, o, for a collocation point shift, v, of one quarter of a panel length and the four-point operator.
It can be seen that the damping is reduced as the distance, o, is increased and that the dispersion is
small for the principal wave number. The analytical method, figure 2A, shows very small dispersion
in a large wave number range as the distance, o, is increased. No damping is present for the analyti-
cal method. The analysis shows that there is only a very #mall difference between first and higher

order panels if the source panels are raised a distance above the free-surface. Details of the present
analysis are described in ( Janson, C. E. 1996B ).

A: Analytical method, Y=1.0, 0.=0.0, 0.5, 1.0, 2.0 B: Residual, free-surface boundary condition
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Figure 2

Numerical comparison for the Series 60 hull, Fn = 0.316

Non-linear computations were carried out for the Series 60 hull using both the four-point operator
and the analytical method. The solution method for the non-linear problem is to linearize the free-
surface boundary condition around a known base solution and solve the problem in an iterative man-
ner. In each iteration the problem is linearized with respect to the solution from the previous itera-
tion. The first iteration is started from a zero Froude number flow where a Neuman condition is
applied on the free-surface. In the first linear solution the linearized free-surface boundary conditions
are applied on the undisturbed free-surface and are in the following iterations moved to the wavy
free-surface computed in the previous iteration. The source panels were raised about one panel
length above the wavy free-surface.

The iteration history of the max residual for the combined free-surface boundary condition is in fig-
ure 2B shown for the four-point operator and the analytical method both for first and higher order
panels using 25 panels per fundamental wave length. It can be seen that the residuals are reduced to
very small values for both methods but the analytical method shows a slightly slower convergence.
Note the logarithmic scale for the residual. There is only a very small difference between first and
higher order panels.
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A grid dependence study was carried out for the number of panels on the free-surface using higher
order panels. In figure 3 the wave profile is plotted at 0.0755*Lpp aside of the centre line for 5, 10,
15, 20, 25 and 30 panels per fundamental wave length and as can be seen the wave profile converges
towards the measured profile as the number of panels is increased. A slightly faster convergence is
noted for the analytical method but the solution is still not grid independent for 30 panels per wave
length.

It is interesting to note that the same conclusions can bé made from the Fourier analysis in two
dimensions and the numerical computation in three dimensions. In both cases the analytical method
shows smaller dispersion than the four-point operator and the amplitude converges faster due to
smaller damping. But, for the large number of panels used in applied computations there is only a
small difference between the analytical method and the four-point operator. Only a minor difference
was obtained between first and higher order panels in the Fourier analysis and this very small differ-
ence occurred for the wave profile also in the numerical computations.

A: Four-point operator B: Analytical method
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Figure 3 Wave profile 0.0755*Lpp aside of the centre line
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