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A difficult problem in frequency-domain analysis of non-linear wave interaction with offshore struc-
tures is the evaluation of the two-dimensional free-surface integral, which provides the ’locked wave’
component of the diffraction potential. This is usually done by meshing the free-surface of the fluid
domain into boundary elements, and carrying out the integration element-by-element. The approach
is known to be very time-consuming, especially if needed for computing the third-order forces, where
it is necessary to evaluate the second-order potentials over a large domain on the free-surface. This
paper proposes an alternative way of performing the free-surface integrations. We first extend the
integration domain into the entire free-surface, then subtract out the contribution from the internal
water plane occupied by the structures. In this way an efficient semi-analytical method can be de-
veloped, and the integrals are reduced to one-dimensional quadratures. The algorithm presented in
the paper is relevant to obtaining the ’locked wave’ component of the diffraction potential at.either
second or third order.

1. Semi-analytical method for the free surface integrals

We consider the locked wave component of the potential associated with diffraction by an array of
vertical, surface-piercing structures of arbitrary shape. We define a global co-ordinate system (z, y, )
and a number of local cylindrical co-ordinate systems (ry, 68, 2) which coincide with the individual
structures. The z axis originates from the quiescent free-surface and points upwards. For simplicity
we only consider the second-order potential, but the formulation is also valid at third order. In the
local coordinate system, the locked wave potential can be expressed as:
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where Sy is the entire free-surface of the fluid domain, Q) is the forcing function and G® the Green
function.
We rewrite equation (1) as
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where Sy, is the extended region over the whole free-surface, and S,,; is the water plane of the jth

cylinder. This arrangement implies that we first extend the region of validity for Q® into the water
planes occupied by the structures, and then subtract the contribution due to the ficticious forcing
from the extended region.

We express the forcing function at a point (r;,6;) inside the jth water plane as:

rj
a(;)

where a(6;) is the radial co-ordinate on the jth waterline at 6;.

Q(Z) (7’_7‘, ej) = Q(z) [a(ej), 0.7'] (3)
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The major computational burden comes from the first integral on the right-hand side of equation
(2). For its efficient evaluation, we expand the locked wave potential, the free-surface forcing function
and the Green function into Fourier series:
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where rs = max(rg,r), r< = min(rg,r). 232)(2:), Z,S2) (2) are eigenfunctions, and Jy,(z), Hy(z), In(z)
K, () are normal and modified Bessel/Hankel functions respectively.
We remark that the above-defined integrals assoc1ated with the Green function are valid in the
whole fluid domain, inspite of the fact that Hy(z), I,(z) possess singularities at x — 0. In fact, as
z — 0, we use the asymptotlc form of the normal and modified Bessel/ Hankel functions, noting that

when r — 0, Q®(r,0) = rf(#); and when ry — 0, we have Qn (r )Gn2)|,«k_,0 = 0. When r; > 0,
except for the logarithmic singularity at » — 75, 2z = 0, no other singularity is encountered in the
Green function. The logarithmic singularity was first dlscussed by Fenton (1978). When the field
point is outside the waterplanes Sy;(j = 1,2,---, N, j # k), the nth the Fourier mode of the locked
wave potential can be expressed as:
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In deriving equation (6), we have used the Bessel addition theorem, R, being the horizontal distance
between the jth and kth coordinate systems. A similiar expression for the nth Fourier mode of the
second-order locked wave component in the extended region can also be obtained.

In the case of simple geometry, e.g. for multiple bottom-seated or truncated cylinders, semi-
analytical solutions for the ’free-wave’ component can be obtained (Huang & Eatock Taylor 1997).
Such a solution is adopted in generating the results in the next section.
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2 Computation of the one-dimensional free-surface integrals

Let R; be a large radius, such that when » > Rj, the local waves associated with the modified
Bessel functions can be neglected, and the asymptotic forms can be used for the normal Bessel or
Hankel functions. Thus integrals like Sz(n, R;) can be carried out analytically. For » < R; we can
derive recurrence formulae such as the following for the free-surface integrals:

ro+A4Ar
S1(n,a) = 0; S1(n,ro + Ar) = Si(n, ro) + / rQn(r)Jn(kr)dr (7)

To

ro+Ar
Sa(n,ro) = Sa(n,rg + Ar) +/ rQn(r)Hp(k7)dr. (8)

Algorithms for the integrals associated with the modified Bessel functions are treated in Huang &
Eatock Taylor (1997). In a small interval [r;,r; 4+ Ar], we express the forcing function Q,(r) and the
Bessel/Hankel functions (or modified Bessel functions) as a quadratic function of r, and the quadrature
over this interval can then be carried out analytically. A similar approach was taken by Malenica &
Molin (1995), using numerical integration over a smaller interval.

3 A numerical example

As a numerical example, we consider the free-surface elevation in the vicinity of four bottom-seated
cylinders of radius a = 15.5m, in water of depth h = 300m. The centre-lines of the cylinders are placed
at the corners of a square of side length L = 80m. The incident wave is in the same direction as the
z axis, which bisects two opposite sides of the square. The non-dimensional wave number is given by
ka = 0.403; and the wave amplitude A = 6m.

Fxgures la and 1b illustrate respectively the linear and maximum non-linear (first order plus second
order) free surface elevations around the cylinders. Figure 2 shows the contours of the non-linear free
surface elevation at ¢ = 0. Figure 3 plots the maximum linear and non-linear wave run-up on the up-
wave and down-wave cylinders. Figure 4 presents the maximum linear and non-linear wave elevations
along the z axis. From these figures, we note that the maximum wave elevation in this specific case
is not at the surface of the up-wave cylinders, but is located a little distance in front of them, on the
centre-line. We also see that the non-linear effect can either increase or reduce the local free surface
elevation.

4 Concluding remarks

A semi-analytical procedure is proposed for evaluating the free surface integrals associated with the
frequency-domain analysis of non-linear wave diffraction by multiple structures of arbitrary shape. A
distinguishing characteristic of the procedure is that it is highly efficient for evaluating the non-linear
potential at a large number of points. It takes only a few minutes on a Sun Workstation, for the case
of a complete second-order analysis of four cylinders. With a fully numerical method, it takes over 20
hours CPU time on the same computer. This method therefore provides an efficient tool for flow visu-
alization of non-linear wave field around multiple structures, and for undertaking third-order analyses.

This work was sponsored by EPSRC through MTD Ltd (Grant GR/L19355) and jointly funded
with Den Norske Stats Oljeselskap a.s. and W.S. Atkins Consultants Ltd.
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Figure 1. Isometrics of maximum free surface
elevation around 4 bottom-seated cylinders: (a)
first-order; (b) first-order plus second-order.

Figure 3. Maximum wave run-up around the
cylinders; ( ) linear, up-wave cylinder;
(-~ — —) non-linear, up-wave cylinder; (------ =)
linear, down-wave cylinder; (—-—-—~ ) non-linear,
down-wave cylinder.
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Figure 2. Contours of non-linear wave elevation
at £t = 0.
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Figure 4. Maximum free surface elevation along

the central line y = 0, (
nonlinear.

) linear; (— — —)




