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Introduction

Knowledge of flows due to internal waves, their origin and propagation, is important for
many reasons. Relevant examples are flows in fjords and at sills, breaking of internal
waves and mixing processes in the ocean, motion in coastal water and sub-surface waves
in a layered ocean. An important aspect of the latter relates to oil exploration in deep
water, with operation performed from ships or oil platforms floating at the sea surface,
connected to subsea drilling or production via long cables. Knowledge of currents in the
ocean, which may be induced by internal waves, may be of importance for the design of
such concepts, in addition to the wave effects at the ocean surface. Dynamics of internal
waves 1s also important in dimensioning of subwater bridges, which have been proposed
across Norwegian fjords. This study is in particular motivated by needs relating to the
two latter problems. In this abstract we describe recent efforts at the University of Oslo
on this issue, both theoretical and experimental.

Time stepping of the interface

In the two-layer model we study fully nonlinear two-dimensional motion of two fluid
layers of infinite horizontal extension under the action of gravity, with the gravitation
force along the negative vertical direction. The lower fluid layer has thickness h; at
rest and constant density p;, and the upper layer has thickness h, at rest and constant
density ps, where p; is smaller than p;. Hereafter, index 1 refers to the lower fluid, and
index 2 to the upper. A coordinate system O — zy is introduced with the z-axis along
the interface at rest and the y-axis pointing upwards. Unit vectors i,j are introduced
accordingly. We assume that the two fluids are homogenous and incompressible and that
the motion in each of the layers is irrotational such that the velocities may be obtained
by potential theory, i.e.

vy = ’LL1i -+ ?)1j = V¢1, Vg = u2i + 'Uzj = V§b27 (1)

where ¢; and ¢, satisfy the Laplace equation in their respective domains.
We adopt a pseudo Lagrangian method where pseudo particles are introduced on the
interface, each with a weighted velocity given by

vy = (1 — a)vy + av, (2)
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where 0 < a < 1. To determine the position R = (X,Y) of a pseudo particle we use

DR .
dt Vx (3)

where a pseudo Lagrangian derivative is introduced by Dy /dt = 8/0t + v« - V. From
the dynamic boundary condition at the interface I we find

Dy (91 — po2 2 2“
Deldr2mba) _ g — pvr) = (3 = v — (1 - g —

P at [ (4)
where p = pa/p1. The equations (3) and (4) contain sufficient information to integrate
R and ¢; — p¢, forward in time. It is, however, an advantage to apply also higher order
derivatives of (3) and (4) in a time stepping procedure for R and ¢; — pd,.

The Eulerian velocity fields in the layers are obtained by solving the Laplace equation
at each time step. It turns out that accurate solution of the Laplace equation is crucial to
an algoritm for computing interfacial flows. Earlier works on time evolution of nonlinear
interfacial waves have applied singularity distributions directly along the interface to
solve the Laplace equation. We have sought a different method, and have chosen to
employ Cauchy’s integral theorem for this purpose, which is advantageous in avoiding
instability.

Invoking complex analysis we introduce complex variable 2 = & + 4y and complex
velocities g;(z) = u; — tvj, j = 1,2. Since g; are analytic functions of z we have by use
of Cauchy’s integral theorem

—miga(2') = PV 2:(2)dz +/1: 2(z) dz” (z on I) (5)

I 2/ —z2 z* + 2thy — 2!

rig(#) = pv [2)E /I_ql(ﬂf_

I 2 —z z* — 2th, — 2
q1(2)dz +/ q1(z)*dz*
B

B 2 —z z* — 2thy — 2

(z on I) (6)

miq(z) =

q1(2)dz / q(z)*dz*
I 2'—z Iz*—2ihy — 2

. py [ 2k, /B _al)d o By (7)

B 2z —z z* — 2thy — 2

where PV denotes principal value and B denotes the boundary of a geometry in the
lower fluid. Only the real part of the principal value integrals in (5)—(7) are singular.

Transcritical flow at a topography. Upstream solitary waves

We apply the model to study transcritical two-layer flow at a bottom topography. There
are several questions concerning this subject: Under which conditions is the flow un-
steady? Another aspect is upstream influence in stratified flows, which in part can
be addressed by the present two-layer model. Furthermore, for which conditions may
transcritical flow over topography generate upstream solitary waves? These topics have
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been discussed in earlier works exploiting hydraulic nonlinear theory or weakly nonlinear
dispersive models. These methods have, however, limited validity with regard to nonlin-
earity and dispersion and give unrealistic predictions for finite amplitude and moderate
wave length.

In the transcritical regime we find that an undular upstream bore is generated when
the speed of the geometry, U, is less than a value which slightly exceeds the linear long
wave speed, ¢o. In the remaining part of the trangcritical regime we find that solitary
waves propagating upstream are generated by the geometry. We show an example in
figure 1, which is due to a half elliptical bottom topography with horizontal half-axis
10h;, vertical half-axis 0.1h;, moving with speed U/c, = 1.1 in the lower layer, with
ha/hy = 4 and p = 0.7873. We have performed a very long time simulation with this
configuration. A depression behind the moving geometry stabilizes at a level of 80% of
the initial thickness of the lower fluid. The upstream waves have all the same amplitude,
within a variation of 0.3%. The amplitude has same magnitude as the depth of the
thinner layer, which means that the nonlinear effect is rather strong. Upon comparing
with the solution of a steady profile we find a very good agreement between the computed
profiles and wave speeds. Thus, the simulated waves may be regarded as a train of solitary
waves.

In several other examples (not shown) we find that a moving geometry generates
upstream disturbances with rather large elevation, even for geometries with small height
(the volume of the geometry cannot be too small). We also compare our results with
weakly nonlinear Korteweg-de Vries, finite depth and Benjamin-Ono theories. Our re-
sults indicate that these theories in many cases predict quite unrealistic wave profiles, and
that a fully nonlinear method in general is required to investigate stratified transcritical
flow at a geometry or bottom topography.

Experiments

We also perform experiments on internal waves with the perposes to determine wave
shapes, velocity profiles and compare with theoretical models, such as the interface
method. The experiments are carried out in a wave tank, and we use fresh water above
salt water with vertical density profiles varying between p, = 1.0000g/cm?® and p; =
1.0225g/cm®. The velocity field in solitary waves is measured using Particle Tracking
Velocimetry, where the fluid is seeded with particles and the motion is recorded onto a
video tape. This is later digitized and analyzed by image processing.

The experiments are carried out with different (vertical) density variations, including
profiles from rather localized depth variation, to density variations with some vertical
extension. We compare the velocity profiles due to solitary waves with approximately
corresponding amplitudes obtained by computations and experiments. We find very
good agreement between the different methods, see figure 2. In this example hy/hy = 4
and |Y|mez/h2 = 0.68. This means that the interface method may be applied also to
a stratified fluid, as long as a typical wave is much longer than the thickness of the
stratification.

This research was supported by The Research Council of Norway through a grant of
computing time (Programme for Supercomputing).
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Figure 1: Generation of upstream solitary waves. Moving elliptical bottom topography
with major half-axis (horizontal) 10h;, minor half-axis (vertical) 0.1h;. U/co = 1.1,
p = 0.7873, hy/hy = 4. (a) Profile after ¢1/g/hy = 2760. (b) Close up of figure (a), black
squares mark steady solitary wave solution with |Y|mee/h1 = 0.869.
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Figure 2: Velocity profile at the crest of a solitary wave. * and o: experiments with
different stratification. Solid line: two-layer model (theory). |Y|mac/h2 = 0.68, p =
0978, hl/hz = 4.
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DISCUSSION

Grilli S.: What type of boundary conditions did you use on lateral boundaries of
your model? Did you translate the model with the mean wave velocity?

Grue J., Palm E.: The lateral boundaries are assumed far away such that the flow

there may be considered to be zero. The model is translated with the mean wave
velocity—approximately—in the computations.
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