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1. INTRODUCTION

This paper describes a quadtree based finite element solver for two-dimensional fully
non-linear time-dependent free surface tflows. In the scheme, the free surface is allowed to
deform, and a new mesh created at each time step. To ensure fast, fully automatic mesh
generation, an underlying Cartesian quadtree grid is first created about seeding points at the
free surface and on rigid boundaries; the quadtree grid is then triangularised to generate the
finite element mesh.

Details of the governing equations and finite element formulation used in this work
are given by Wu and Eatock Taylor (1994, 1995). The quadtree-based grid generation is
described in detail by Greaves (1995). Numerical results obtained here are for standing waves
in rectangular tanks of various aspect ratio. The results show encouraging agreement with
analytical solutions and alternative numerical data.

2. RESULTS

The fully non-linear moving boundary finite element method was used to simulate
various cases of standing waves in rectangular containers. Mesh size and time step
convergence tests were carried out for a steep standing wave profile, taken from Mercer and
Roberts (1992). Standing waves generated from sinusoidal initial profiles were also
considered. The decrease in non-linear wave frequency with amplitude in deep water, and
the corresponding increase in shallow water, noted by Tsai and Jeng (1994) as well as
Vanden-Broeck and Schwartz (1981) and Tadjbakhsh and Keller (1960), are observed. Each
of the standing wave simulations presented herein has a larger crest amplitude than trough
amplitude, which is typical of non-linear wave profiles (Tsai and Jeng, 1994).

The various parameters used in the numerical simulations are non-dimensionalised as
tollows,
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where ¢ is the velocity potential, & is the water depth, g is the acceleration due to gravity, L
is any length, ¢ is time and ® is the wave frequency. The superscript ~ represents a
dimensional value. All calculations were performed on a SUN SPARC 10 workstation.

In each of the following simulations, the dimensionless height of the container walls
is equal to 1.5. Unless otherwise stated, the seeding points are spaced to provide the
maximum mesh resolution along the free surface boundary and at the container walls in the
region which intersects with the free surface. The seeding point spacing at the free surface
is equal to S, =2, where M is the maximum division level of the underlying quadtree grid.
Thus, the resolution of the underlying quadtree grid, and also of the finite element mesh, is
finest where velocity potential gradients are likely to be highest, and coarsest at the bottom
of the container where gradients are likely to be low.
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Standing Waves in a Rectangular Container

Various standing waves were simulated in order to investigate the relationship between
water depth, amplitude, and frequency of oscillation. The waves have initial surface elevation
profile, N = acos(2nx/b) where x is measured along the length of the tank, b is the length of
the tank and a is the wave amplitude.

Figure 1 shows the initial mesh for case A. The dimensionless length of the tank, b,
is equal to the dimensionless wavelength 2. The dimensionless wave amplitude, a = 0.05.
Figure 2 shows the wave surface elevation history at the centre of the tank, plotted with the
linear and first plus second order analytical solutions calculated following the method
described by Wu and Eatock Taylor (1995), for comparison. The linearised analytical
solution does not agree well with the fully non-linear numerical solution as time increases.
The inclusion of second order terms, however, leads to much better agreement.

The time period of non-linear oscillation in Figure 2 is greater than that predicted by
linear theory. This effect was noted by Tsai and Jeng (1994), Vanden-Broeck and Schwartz
(1981), and Tadjbakhsh and Keller (1960). Tsai and Jeng (1994) calculated numerical Fourier
solutions of standing waves in finite water depth, and observed that the non-linear wave
frequency increases with wave steepness for water depths less than 0.1662 of its wavelength,
and decreases with increasing amplitude for depths greater than this value.

Various cases were investigated and the results recorded in Table 1. Figure 3 shows
the initial mesh for case D, and the temporal free surface elevation plot is given in Figure 4.
In Figure 4, the third trough is higher than those surrounding it, which may indicate the
occurrence of double minima in the wave profile at this stage. This etfect is recorded by Tsai
and Jeng (1994) for shallow water standing waves.

Each simulation was continued over at least five cycles and the non-linear wave
frequency, o, determined, along with the corresponding h/L, and H/L, values, where H is the
wave height. The corresponding linear wave frequency, ®,, and linear wave length, L,, are
calculated using linear wave theory. The ratio, w/m,, is given in Table 1 as a function of h/L,
and H/L, for each of the standing wave calculations and can be seen to agree reasonably with
equivalent frequency ratios obtained from Tsai and Jeng’s (1994) data. The decrease in non-
linear wave frequency with increasing amplitude is evident for cases A and B, in which & =
L, /2, and for case C in which h = L,/4. In case D, h = L/10 and the non-linear wave
frequency is greater than the linear value.

Standing Wave Interaction with an Array of Three Submerged Circular Cylinders

In order to demonstrate the tlexibility of the mesh generator to model complex
geometries, the case of a standing wave in a tank containing three submerged horizontal
cylinders was simulated. Figure 5 shows the initial mesh for this case, in which the cylinders
each have diameter, d = 0.35. The underlying quadtree grid has a maximum of 8 and a
minimum of § division levels. The wave has an initial cosine elevation of amplitude a =
0.01. Figure 6 shows the computed time history of the wave elevation recorded at the centre
of the tank. A regular standing wave oscillates above the submerged bodies.

3. CONCLUSIONS
The finite element mesh generator proposed herein produces a mesh of high quality
triangular elements without hanging nodes from an underlying quadtree grid. Coupled with
the finite element solver, the adaptive grid generator models the moving free surface with a
high level of resolution, controlled by the spacing of the seeding points.
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The flexibility of the method is demonstrated by the results presented here, which
agree well with published data. The predicted deviation of the period of oscillation from the
linear value as the wave height is increased corresponds to that described by Tsai and Jeng
(1994).
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CASE h/L, HIL, (/) (/)
present scheme Tsai and Jeng (1994)
A 0.5 0.05 0.991 0.996
B 0.5 0.13 0.978 0.979
C 0.25 0.10 0.989 0.989
D 0.1 0.02 1.007 1.003
Table 1 Comparison between results predicted by the present method and by Tsai and

Jeng (1994) for various combinations of wave steepness and water depth.
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Figure 1 =10, Case A
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DISCUSSION

Magee A.: Is your gridding scheme appropriate for use in a nonlinear BEM
surface grid on a complex (ship) hull form?

Greaves D.M., Borthwick A., Wu G.X.: If a discrete set of seed points can be

defined which describe the hull form, then it should be possible to produce a
surface mesh using the octree-based method.
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