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INTRODUCTION

We present here an original solver [1] to compute two-dimensional free surface flows in viscous and
incompressible fluid by a finite difference method. In most of the methods used nowadays for
solving such problems, free surface elevation is updated at each time step by integration of the
kinematic condition after computation of velocity and pressure fields [2] [6]. In these methods non-
physical boundary conditions must be introduced to solve linear systems and non-linear free surface
boundary conditions cannot be computed accurately. In the method presented here exact non-linear
free surface boundary conditions are implemented on the real position of the free surface. At each
time step the totally coupled linear system for velocity, pressure and free surface elevation unknowns
is solved by a CGSTAB algorithm. Results for a free surface-piercing cylinder in forced heave, sway
or roll motion are presented.

EQUATIONS AND NUMERICAL RESOLUTION

Navier-Stokes equations for laminar flows are written under convective form in a cartesian system
x',x°) defining the physical fluid domain. The dependant unknowns are the cartesian components
u',u*) of velocity, the dynamic pressure p = P+ pgx’ including gravitational effects and the free

surface elevation h. A curvilinear system (81,82) is used to simplify the implementation of boundary

conditions. Here &' = 0is the equation of the immersed part of the body and & =0 the equation of
the free surface. A partial transformation of the moving physical space in a fixed curvilinear
computational space is then defined.

In classical uncoupled methods a linear system issued from discretisation of transport and continuity

equations is solved by weakly-coupled algorithms such as PISO or SIMPLER. Thus new velocity

and pressure fields are obtained at each time step. The free surface elevation is updated by integration
of the kinematic condition. This method leads to several theorical or numerical problems :

- a free surface boundary condition for velocities is lacking because of the use of kinematic condition

for free surface elevation calculation. A supplementary non-physical condition must be used and does

not allow an accurate calculation of viscous or surface tension effects. Moreover the normal dynamic
condition is used as a Dirichlet condition for the pressure what leads to a poor mass conservation just
under the free surface.

- the singularity of the kinematic condition at the intersection of free surface and solid body can be

solved by introducing a meniscus. For very refined grids in the vicinity of the body this meniscus can

become too important and lead to numerical divergence of the computation.

- the use of the SIMPLER algorithm gives a poor convergence of non-linear residuals (fig. 1) and it is

a serious problem to compute unsteady flows.

In the new method proposed here the kinematic condition is used as a free surface boundary condition
for velocity. The tangential dynamic condition is the other condition on the free surface for velocities
(as in the uncoupled method). The discrete pressure unknowns are yet located at the centre of the cells
(velocity unknowns are located at the nodes of the mesh) and no pressure boundary conditions are
required. With these choices we have only physical boundaries conditions on the free surface. The
normal dynamic condition gives a relation between pressure and free surface and will be used to
compute the free surface elevation.

A totally-coupled solution is chosen to ensure mass conservation.

The mass conservation is represented by a pressure equation which is discretised by a Rhie and

85




Chow procedure to avoid checkerboard oscillations. This procedure is generalised for cells located
near the free surface to take free surface effects into account and to make the pressure block
invertible. At each iteration the following linear system for discrete velocity, pressure and free surface

elevation unknowns (respectively called U, P and H) is solved and inverted by the iterative CGSTAB
algorithm [8]:

transport equations — | M, | M) | U Ju
pressure equation — | Mg, 1 My, i~ | P |=| fp
normal dynamic condition —| """t My, VMg \H) \ fy

With the coupled method the convergence of non-linear residuals is very good (fig. 1) compared to
the convergence of the uncoupled method. Moreover the total CPU time is decreased by the totally
coupled method (two or three twice as fast than the uncoupled method for the same global simulation
time). ;
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Fig. 1 : Convergence of non-linear residuals with
the present method and an uncoupled method

RESULTS

The monoblock structured %rids used here are generated by an direct algebraic method.
Heave forced motion has been first computed for a circular cylinder. The flow is supposed to be
symmetric and simulated only in half the fluid domain.
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Fig. 2 : Added mass in heaving Fig. 3 : Damping coefficient in heaving

A Fourier transform of the computed time series of the hydrodynamic forces acting on the body leads
to non-dimensional hydrodynamic coefficients.

Numerical results are in good agrement with Yamashita [10] and Tasai et al. [7] experiments even for
the 3rd-order force amplitude [3] and perfect flow computations [5]. Added mass and damping
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coefficients are presented on figures 2 and 3.

For numerical simulations of a rectangular cylinder in forced sway or roll motion [4] the fluid domain
comprises two free surface boundaries which are not connected. These two interfaces are defined by
the equations £“ =0 and g2 = 8r2nax =1 (see fig. 4).
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Fig. 4 : Shape of the grid during a computation in roll

For the sway motion the beam-to-draft ratio B/T was 2 (B=0.4 m in the present computation and in
Vugts experiments [9]) and the forced motion of the form y(¢) = y, sin(wr) with y;=0.02 m. The
present method leads to a good accordance of the computed added mass with the experimental results
or perfect fluid computations of Vugts (fig. 5) but under-estimates the damping coefficient for non-
dimensional frequencies upper than 0.75 (fig. 6).
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Fig. 5 : Added mass in swaying Fig. 6 : Damping coefficient in swaying

(for a rectangle) (for a rectangle)

For roll motion the beam-to-draft ratio B/T was 2 and the forced motion of the form
¢(t) = ¢, sin(ar) with @,=0.1 rad. Results are compared with viscous flow computations of Yeung
et al. [11] (made with @,;=0.05 rad) based on the Free-Surface Random-Vortex Method and Vugts
experiments with @,=0.1 rad (non-dimensional experimental results for @,=0.1 rad and &,=0.05 rad
are nearly the same) or inviscid flow computations

The CM;j and CA; ij with i different from j are the mass coupling and the damping coupling
coefficients in the i-equation by motion in the j-mode respectively (with 1 for sway motion, 2 for
heave motion and 3 for roll around an axis perpendicular to the plang of the flow). The h drodynamlc
coefficients are non-dimensionalised according to CM;; = a;; / pAB2 and CA;; =b;~/B/2g/ pAB
A is the area coefficient. A 10000 nodes-grid (100 on the body) was used for most of the
computations with a time step of 0.01 s. For lower motions frequencies a 23000 nodes-grid (230
nodes on the body) was required and the time step was 0.005 s.

Added roll moment of inertia (fig. 7) is well-predicted and close from Vugts experiments. However
the damping coefficient in roll is highly over-predicted (fig. 8) for all motion frequencies. On the
contrary the mass and damping coupling coefficients are in good agreement with Vugts experiments
and perfect fluid computations (fig. 9 and 10) except for the mass coefficient for the lowest computed
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frequency.

These first results are satisfying and show the interest of viscous-flow computations for such quite
complex flows. However other computations must be undertaken particularly for the calculation of
the damping coefficient in sway and roll. More refined grids in the vicinity of the body will be used to
try to compute viscous effects (particularly vortices shedding near solid walls and corners of the body
in motion) with more accuracy and should improve present results.
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Fig. 7 : Added mass moment of inertia Fig. 8 : Damping coefficient in roll
in roll (for a rectangle) (for a rectangle)
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Fig. 9 : Mass coupling coefficient Fig. 10 : Damping coupling coefficient
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DISCUSSION

Yeung R.W.: These are encouraging calculations along a boundary-fitted
coordinate full N-S solver of Yeung & Ananthakrishnan (1992, J. Eng. Math.).
However, I do not believe the calculations you presented have sufficient precision.
Fig. 3 shows that the total damping with viscosity is less than the inviscid solution.
Our recent FSRVM method (Ref. 11) has been validated by comparing vorticity
structures with DPIV measurements. As mentioned in Ref. [11], we have some
doubts that Vugt's expt. data for added inertia is correct. Your calculations for
CM33 may well be off by as much your damping is unreasonably high in Fig. 8. I
hope you can be successful in tracking down the problems.

Gentaz L., Alessandrini B., Delhommeau G.: The originality of the present
method consists in solving only one fully-coupled linear system for the velocity,
pressure and free surface elevation unknowns at each iteration. This method first
implemented by B. Alessandrini (1995, Numerical Method in Laminar and
Turbulent Flows, Atlanta, vol. IX, part 1, pp. 1173-1184) allows complete free-
surface boundary conditions to be taken into account and an efficient and fast
convergence during nonlinear process (figure 2) contrary to weakly-coupled
methods as this one described by Yeung and Ananthakrishnan in Journal
Engineering Mathematics, 1992, or others (1994, proceedings of CFD Workshop,
Tokyo).

We do not believe that differences between Navier-Stokes computations and
experiments for the figure 3 (damping coefficient for a circular cylinder in forced
heave motion) are significant. In this case, part of viscous forces seems negligible.
In our opinion, these differences can be explained by Fourier analysis of forces
acting on the body or gaps in the manual plot of experimental data but are not due
to an insufficient precision in the computation.

Concerning hydrodynamic coefficients for a rectangular cylinder in forced roll
motion, damping coefficient is actually largely overestimated and its computation
must be improved. For the added inertia coefficient CM33 we hope you can
provide other experimental data to confirm your hypothesis and computations.
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