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1 Introduction

The free surface steady potential flow around
a fine wedge shaped bow is studied. The con-
cept of a bow flow solution was first introduced
by Ogilvie (1972) and has recently been studied by
(among others) Faltinsen & Zhao (1991), Fontaine
& Cointe (1997), and Fontaine (1996). When the
so called 2D +1/2 or 2D +t theory is used to find
the bow solution, good agreement is generally re-
ported between the measured and computed wave
profile along the hull. The main differences appear
at the “nose” (apex) of the wedge where an ini-
tial elevation is observed but is not predicted. To
over-come this misfit, a local analysis of the flow
in the near-bow domain is performed (see fig. 1).
The near-bow solution matches on the one hand
to the bow-flow solution and on the other hand
to the far-field solution. It also leads to an esti-
mate of the wave elevation at the nose of the bow.
Comparison with experiments are given. Exten-
sion of the theory to general cross-sections will be
discussed in the oral presentation.

2 The near-bow flow

The two non-dimensional parameters describing

the wedge shaped bow are tana = b/L and § =
h/L. The near-bow domain is based on a length
scale equal to the draft h and a velocity scale equal
to U. The non-dimensional variables are defined
as :
T .Yy oz
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where ¢ is the velocity perturbation potential and
n the free surface elevation. Assuming the ship to
be slender or thin (o < 1, § < 1), the following
asymptotic expansions are introduced :
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Since there is no dilation of the space variables,
the leading order perturbation potential ¢; sat-
isfies the three-dimensional Laplace equation in
the fluid domain. Using the non-dimensional vari-
ables, the body boundary condition gives :

The principle of least degeneracy implies that
fi1 = 0. When the ship is thin (o < §), the re-
sulting condition is :
O
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on the center plane of the hull.

The kinematic free surface condition is imposed
on 2 = (a/d) i 7y and takes the form :
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The principle of least degeneracy implies that 7; =
4 so that the resulting condition at first order is :
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The dynamic free-surface condition is then :
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Since 7y is of order O(1), a non-trivial solution can
then only be found if :
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Figure 1: ¢llustration of the different domains of the composite solution.

Fontaine & Cointe (1997) obtained a similar con-
dition for the different approximations to be co-
herent in the bow flow problem :
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Since we study both the bow flow and the near-
bow flow, we must satify the condition (5) which
is the more restrictive. In that case, 2D+t theory
can be used to compute the bow solution and the
previous near-bow approximations remain valid.
As a consequence, gravity effect can be neglected
at first order in equation (3). Assuming the per-
turbation potential vanishes at infinity in front of
the ship (& — —o0), the resulting condition is :

¢1(2,9,0) =0 (6)

The perturbation potential satisfies the three-
dimensional Laplace equation subject to the
boundary conditions (1) and (6). The solution of
this problem can be expressed in term of a distri-
bution on the center plane of the hull of Rankine
sources and mirror sinks above 2 =0 :
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Taking the limit and performing the integral leads
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3 Matching of the different
solutions

Fontaine & Cointe (1997) use the method of
matched asymptotic expansions to define an in-
ner solution valid in the bow region, and an outer
solution valid far from the ship. Even if the outer
solution remains valid in front of the ship, these
two solutions are not of same order of magnitude
in the near-bow domain so that they do not match
at first order (Fontaine, 1996). The introduction
of the near-bow domain removes this gap since the
near-bow solution matches on the one hand to the
bow flow solution and on the other hand to the
far-field solution.

Using the following non-dimensional variables :
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the perturbation potential is given by! :
d¢1(£,9,2)  in the near-bow domain
in the bow domain

in the far-field domain
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The far-field solution is given by a distribution
of three-dimensional vertical dipoles on the axis

& > 0. Using 6 = tan~'(2/§), @y is given by :
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The dipole density is given by the behaviour of
the bow flow solution as # — +o0 :
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3.1 Matching of the near-bow and bow
solutions

In order to match the near-bow flow solution
to the bow flow one, we define an intermediate
variable z,, = &/x(0) where § <« x(0) < 1. z,
is of order O(1) in the overlap domain and the
matching condition at first order is :
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This condition states that the behaviour of the
bow solution at origin must be the same as the
behaviour of the near-bow solution as & — 4o00.
Taking (7) into account, this condition implies

that :
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This can be recognised as a solution of the bow
flow problem. Indeed, this expression satisfies
the two-dimensional Laplace equation subject to
the body boundary condition and an homoge-
neous Dirichlet condition on the unperturbed free-
surface. As a result, the two solutions match if the
initial conditions for the bow flow problem are :

¢1(0,9,0)=0 and (0,9 =0

These are the same initial conditions as used in the
bow flow solution by Fontaine & Cointe (1997) and
Faltinsen & Zhao (1991). However, this matching
is more precise since the bow flow and the near-
bow flow solutions have the same order of mag-
nitude in the overlap domain. As we will see in
section 4, it also leads to an initial wave elevation.

A A

Sbl (Oa Y, Z)

!where the subscript 1 indicates that the quantity is of
order O(1)
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3.2 Matching of the near-bow and far-
field solutions

3.2.1 Bow side matching

The behaviour of the near-bow solution far aside
the ship bow (as & = O(1) and # — +00) must be
the same as the behaviour of the far-field solution
in the vicinity of the ship bow side, i.e. as # — 0.
As before, we define an intermediate variable r, =
7/x(8) (6 < x(§) <« 1) which is of order O(1) in
the overlap domain. The matching condition is at
first order :
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When § — 0, it follows from (7) and (8) that :
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The dipole density u(0) is determined by using
equations (9) and (10). This leads to u(0) = —2
so that the two solutions match.

3.2.2 Matching in front of the bow

The behaviour of the near-bow flow solution far
ahead of the bow, as # = O(1) and & — —o0
must equal the behaviour of the far-field solution
in front of the bow (as & — 07). Using an interme-
diate variable z, = &/x(d) so that § < x(d) < 1,
the matching condition is at first order :
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When 6§ — 0, it follows from (7) and (8) that :
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As a result, the two solutions match.




4 Composite solution

The composite solution is obtained by adding
the near-bow to the bow solution and by sub-
stracting the common part (given by eq. (10) for
the potential). In front of the bow (2 < 0), the
composite solution for the wave elevation is equal
to the near-bow solution and can be found by inte-
grating the kinematic free-surface condition (2) :
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The wave elevation in front of the bow is therefore
independant of the speed and the wave elevation
at the nose is :

n0,0= < ()

These results differ from the results of Sclavounos
(1994). He predicted half the value of eq. (11).
The theoretical result has been compared with ex-
periments presented by Fontaine (1996). Because
of the small size of the tested model, the effect
of surface tension is important. The experimen-
tal results can be scaled to full scale by introduc-
ing a surface tension parameter (see fig. 2). Full
scale corresponds to that surface tension parame-
ter goes to zero. The results show that eq. (11) is
reasonable.
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Figure 2: Initial elevation as a function of the sur-
face tension parameter. « = 15°, F, = U/\/gh,
o = surface tension.

For the wave elevation along the hull (2 > 0), the
following three-dimensional correction should be
added to the bow flow solution :

An =
U T
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z/h 0- [0.05] 0.1 |0.15| 0.2 | 0.3
wAn/(ah) | 1.0 | 0.83 | 0.73 | 0.66 | 0.6 | 0.5
z/h 04 | 0.5 | 1. 2. 5. | o0
wAn/(ah) | 0.43 | 0.38 | 0.22 | 0.12 | 0.05 | 0

Table 1: Numerical values of the wave profile cor-
rection.

However, this three-dimensional correction is not
sufficient to completely explain the differences
between experiments and the bow solution by
Fontaine & Cointe (1997). One reason to this
is surface tension effects like in fig. 2. There
were not done measurements for the wave eleva-
tion along the huil for small surface tension pa-
rameter to see any trend for full scale situation.
This need futher investigations.
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DISCUSSION

Tuck E.O.: I applaud this study, which corrects a well-known deficiency in the
2.5 D theory, namely absence of a rise in FS at the bow. But I am not sure how it
was achieved, since surely matching between the local bow flow and the 2.5 D
expansion should have supplied a non-zero initial condition to the latter.

Fontaine E.: Thank you for your comments. The matchings have been performed
using the classical technique of matched asymptotic expansions and the details of
the procedure will be published soon. It appears that 3D effects arise in the
composite solution which is the sum of the 2.5 D expansion and the local bow
flow, substracting the common part of the two expansions.
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