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1 Introduction

The mean wave force acting on bodies, stationary or moving with a small forward speed in a wave
field is considered. This force, the so called wave drift force, has shown to be of great importance
within offshore technology. The change in the drift force because of the small speed, the wave drift
damping, may be an important damping mechanism.

Calculation of the wave drift forces has traditionally been based on linear theory giving the drift
force consistently to second order in the wave amplitude, the mean second order wave force. We
here refer to Grue & Biberg (1993), who extended the theory to include a finite depth. In this
work we use a long wave approximation to calculate higher order wave drift forces on a vertical
cylinder in shallow water, but of interest is also the time-dependent higher order wave force. The
latter is among others also considered by Jiang & Wang (1995), for stationary bodies. As a model
we use one version of the weakly nonlinear and dispersive Boussinesq equations, see. e.g. Wu
(1981), Pedersen (1989). We remark that the Boussinesq equations contain the fully nonlinear
hydrostatic equations. The equation set is then modified to include a small current. It is necessary
to point out that in many practical problems, the water depth is outside the limit of the long wave
approximation. One of the intentions with the present work is however to indicate higher order
effects on the wave drift force.

The body is exposed to incoming cnoidal waves, and the wave field around the body is solved
numerically in space and time by the finite element method. Then the drift force is computed by
first integrating the pressure over the body surface, and then time-averaging the periodic force.
The wave drift damping is calculated by numerical differentiation of the drift force with respect to
the small current.

2 Mathematical formulation

The problem is considered in a frame of reference (z,y,2) moving with the body, in which there
is a small constant current U in the positive z-direction. Assuming potential theory, the velocity
field may be expressed by a velocity potential ®(z,y, z,t), where t is the time. According to the
long wave approximation used here, we then introduce a depth average velocity potential ¢ (z,y,t)
by
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Here 7(z,y,t) denotes the surface elevation, and the constant h is the mean water depth. We
observe that the unknowns % and 7 are only functions of the horizontal coordinates. Furthermore
¥ is divided into two parts 9 (z,y,t) = ¢(z,y,t) + do(z,y) where ¢ and @o represent the velocity
potential due to the waves and the small current respectively. Typical wave length Ao, and typical
wave height Hy are then defined, and three important dimensionless parameters ao, and € given
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will be present in the model. The gravitational acceleration is denoted by g. The actual version
of the Boussinesq equations that will be used, and modified to include a small current, has the
advantage of containing the unknown velocity potential instead of the two horizontal velocity-
components. This reduces the total number of unknowns The equation set for the unknown
potentials ¢o and ¢, and the surface elevation 7 is

V2o =0 3)

0
0 v an+ 2o - 2922 L vg, vo= 0 ©
9 4V (4 1)VE) + Vo V=0 ®)

where neglected terms are O(o2, apae, a®e, ac?). Eq. (4) represents conservation of momentum,
while eq. (5) represents mass conservation.

The force acting on the body is obtained by integrating the pressure over the body surface. The
depth integration is done analytically, and for the time dependent force F(t) we then obtain the
following expression in terms of ¢g, ¢ and 7

P()=ph [ B(—Zf + 2n? — L(V9)? ~ Voo - V)udl (6)

Here I'g denotes the contour line of the body, n is the normal vector pointing out of the fluid
domain and p is the fluid density. By time-averaging the force with respect to the wave period, we
obtain the drift force F

F = ph / (1P~ L(V9)? ~ V6096 — L(GD2)mar ()

In this expression neglected terms are O(oZ, aoo?e, a*e, a®e?), which is consistent with (3) - (5).
The wave drift force is then expanded in order of ap by F = Fo+ aoF1, where Fy is the zero speed
drift force, and aoF; is the wave drift damping force.

3 Numerical simulation

The numerical solution is performed by using the finite element method, with the ability of easily
consider bodies of arbitrary shapes. Differentiation with respect to time is approximated by finite
difference. For further details about the numerical method, we refer to Irmann-Jacobsen (1989)
where (4)-(5) have been solved numerically when ¢o = 0.

The model is applicable to an arbitrary fluid domain, but in the present study we want to calculate
the drift force on a body in an unbounded fluid, with the incident wave field propagating in positive
x-direction. We therefore define the simulating area as a square basin, (see. Fig 1), and solve (3)-(5)
with the following initial and boundary conditions.

Eq. (3) for the unknown ¢o:

%,
—6‘% = -Up,Up on Ty,Tg (8)
0
=0 on Tsls ©)
Eq. (4) and (5) for the unknowns ¢ and 7:
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Considering the solution of (4) and (5), (11) is the essential and (12) the natural boundary condition,

the latter being the rigid wall condition. The incident waves given by n; and ¢; with given wave
length A, and given wave height H, are the cnoidal wave solution of (4)-(5).

It is necessary to discuss some aspects about the discretization and the choice of boundary con-
ditions. The time-averaging of the force must not be done before the wave field around the body
has become nearly periodic in time. We must therefore either impose a radiation condition, or use
a very large simulating area. The problem with the first is that it is difficult to ensure that the
boundary does not reflect any significant waves, this has been the outcome from simulations where
a radiation condition has been applied. In the latter case, one normally need a large number of
elements. It is however found, by simulation of solitary waves propagating in one direction, that
by increasing gradually and not to fast the element size, reflection because of grid-variation may
bee neglected. We therefore use a large basin, with increasing element sizes in the outgoing region
(i.e. downstream and to the side of the body see. Fig 1). It is then like wise to use the rigid
wall condition on I's and I'g. A time-averaging procedure is then established, and the drift force
may be computed within a reasonable CPU time. An analytical solution of the second order drift
force based on (4)-(5) when ¢o = 0, has been developed for a circular cylinder. The mean second
order wave force has then been computed numerically and convergence-tested with the analytical
solution, with very good accuracy.

on TIg,I's,I'r (12)

4 Results

In the first example, the body is a circular cylinder, with radius R = 5h, the size of the basin is
110A x 110k with 11745 elements in half of the fluid domain. The body is exposed to an incident
cnoidal wave train, and Fig. 2a shows an example of the z-component of F(t) at two different
values of Up. Fig. 2b and Fig. 2c then shows the z-component of the zero speed drift force and the
wave drift damping at different values of the wave height, as a function of the wave length. The
numerical differentiation of the drift force is done about U = 0.0 with AUy = 0.044/gh. H = 0.0
means second order theory. What is interesting to note is that both the wave drift coefficient pg—g.‘fm

and the wave drift damping coefficient pg_fl%% are decreasing with increasing values of % In the
last example, Fig. 2d, the body is a model of a ship with length L = 10k and beam B = 1.79h. In
this case we see that the wave drift damping coefficient is not always less for the steepest waves.
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Figure 1: Discretization of half of the fluid domih, for the body being a circular cylinder. 4095
elements.
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Figure 2: (a): The z-component of F(t) for the circular cylinder, H/h = 0.2, \/2R = 1.5, Up/+/gh =
0.02 (solid line) and —0.02 (dashed line). (b) and (c): The z-component of Fo and F for the circular
cylinder, H/h = 0.0 (solid line), 0.1 (long dashed line), 0.2 (dashed line) and 0.3 (dotted line). (d):
Fyy for the ship, H/h = 0.0 (solid line), 0.1 (long dashed line), 0.15 (dashed line) and 0.3 (dotted
line).
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