Impulsive diffraction by an array of three cylinders

Thomas H. Farstad*

It has recently been discovered that trapped waves are present in an array of cylinders.
Frequency-domain work reported by Maniar and Newman [3] and others, includes both ana-
lytical solutions and computational results. One of the important questions this phenomenon
raises is how long it will take to build up a trapped wave or nearly trapped wave, and how
important this will be in the generation of time series. It is also of interest to understand when
the interaction between the cylinders occurs. ‘

Impulsive-diffraction analysis by an array consisting of three cylinders has been performed
to answer these questions. Results have been reported in the frequency-domain on arrays of
the size of 100 cylinders using a B-spline methodology, but the computational expense using
a planar, constant strength panel method in the time-domain has so far limited this study to
three cylinders. However, the phenomenon found in the frequency-domain are recovered.

During work with arbitrary generalized modes in the time-domain, it was found that a wide
variety of problems could be addressed [2]. Generalized modes were therefore used to study the
diffraction by the three cylinders. The total potential ® describing the flow satisfies Laplace’s
equation. The free surface condition is linearized and the body boundary condition is implied
on the mean wetted surface of the global structure. The total potential is decomposed by

J
=g+ s+ Y, 8 (1)

i=1

where the incident potential is ¢y, the scattered potential is ¢g and for all rigid body modes
and deformation modes there is an associated radiation potential ¢;. If the number of bodies
is N then J=6N.

J normal vectors are also defined, in an N body problem such that ny is zero on all other
bodies except the first. The same is true for n, to ng. The normal vectors ny to ny, are nonzero
on the second body and so on. The diffraction force can then easily be obtained by

Fy = [ (61 +ds)nsds @

where § is the mean wetted surface of the global body. The problem is solved using an integral
formulation and a free-surface Green function as explained by Bingham et al. [1]. Giving the
body an impulsive velocity in a mode, impulse-response functions for the influence on all modes
are obtained.
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The global problem includes three truncated cylinders in infinite depth of radius and draft
a. The separation distance between cylinder centroids is 2d = 4a. The wave heading is parallel
to the array. Each cylinder consists of 240 panels total.

Figure 1 presents the exciting force coefficient vs. nondimensional wavenumber for each
of the three cylinders. The exciting force coefficients are found by Fourier transform of the
diffraction impulse-response functions. The existence of trapped modes is evident. The results
from the time-domain are compared to quantities produced by the frequency-domain code
WAMIT, and the comparison confirms the method used. The peak occurring close to K d/m=
1/2 is the Neumann trapped wave whereas the peak at K d/m = 1 is the Dirichlet trapped
wave. These names correspond to the boundary conditions for the trapped waves, for further
explanation see [3]. Peaks for higher wavenumbers are present as well, all peaks will become
sharper in a larger array and with larger draft for each cylinder.

The diffraction impulse-response functions for each of the three cylinders is presented in
Figure 2. The response function is compared with the impulsive diffraction of a single cylinder
at the same spatial location. To interpret the results it is important to understand that the
impulsive wave is a delta function in time at = = 0, the same spatial location as the center of
the second cylinder. As one would expect, it is found that no interaction is present before the
wave-packet is close to the second cylinder. From the time when the majority of this wave-
packet is coming close to the second cylinder the interaction is evident from Figure 2-a, where
trapped waves are present for t/(L/g)'/? > 0. As scattered waves of the second cylinder are
becoming important, there is a rapid build-up of a nearly trapped wave-force acting on the
first cylinder. The trapped wave has a slow decay rate and when the computation was stopped
interaction effects could still be found. Figure 2-a indicates that it takes 4-5 wave periods to
dissipate the energy associated with the trapped wave for this geometry.

Figure 2-b indicates that the interaction effects on the second cylinder take place earlier, as
can be expected. The sheltering effect is easily seen for t/(L/g)*/? < 0, whereas a trapped wave
is seen for larger time. The magnitude of the wave is initially about the same as for cylinder
one, but the decay rate is faster, of the order of 2-3 wave periods. This might be due to the
interaction with the third cylinder, but results reported in the frequency-domain indicate that
the separation distance is important as well. The third cylinder experiences a strong sheltering
effect, and the trapped wave is not so clearly defined in Figure 2-c. The Fourier transform of
the impulse-response function confirms this.

Applying generalized modes theory, the feasibility of computing impulsive diffraction in the
time-domain for an array has been demonstrated, and it is shown that frequency-domain results
can be reproduced. This gives confidence in the method. For the particular case studied we
find that the trapping effect has a fast build-up, but the decay rate is different for each cylinder.
This might be connected with the separation distance between the cylinders, and further studies
should therefore include variation of the spatial separation. Further work will also be to study
this problem in finite depth with bottom-mounted, rigid, cylinders. Interaction effects have
been found to be strongest for this case, and by convolving an arbitrary wave-packet with the
diffraction impulse-response function one will be able to study the duration of a nearly trapped
wave in a random sea. In the generation of a time series this will be of importance.
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Figure 1: Magnitude of the exciting force coefficient in head seas for an array consisting of 3
truncated cylinders. Cylinder 1 is the first in the row. The separation distance is 2d = 4a,
where a is the radius. The baseline is the force on a single cylinder with no other bodies present.
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Figure 2: Memory function for the impulsive diffraction problem on an array consisting of three

truncated cylinders.
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DISCUSSION

Clément A.: Your results are for evenly spaced cylinders; what would happen to
the trapped modes in the case of uneven spacing?

Farstad T.H.: I have not studied this problem, but I believe the resonance will
disappear if the geometry of the problem is non-symmetric. This can be uneven
spacing or cylinders with different diameters, for instance.

Eatock-Taylor R.: Have you encountered any numerical difficulties associated
with the high frequency content in the impulsive wave?

Farstad T.H.: The formulation calculating the impulsive wave and performing the
water line integral was developed by Bingham, Korsmeyer et. al [1]. The waterline
integral is performed at a distance d/2 below the free surface, where d is the
average height of the panels along the waterline. This attenuates the signal
somewhat, and the high frequency problem is avoided.

Molin B.: You seem to hint that one could end up with different design values
when using a time domain approach, as compared to the usual frequency domain
one. If linearity is assumed, identical values are finally obtained.

On the other hand experiments on TLP like structures show quite different
behavior in regular and irregular waves. In regular waves, quasi resonant sloshing
motions of the free surface are observed at some frequencies leading to non-linear
effects coming into play and ultimately breaking. In irregular waves these resonant
sloshing motions get initiated in long wave groups at critical frequencies then
disappears. So an aspect of the problem is how many waves it takes for the
resonant state to be attained. In this respect your work is quite helpful.
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