Recent progress in dealing with the singular behavior
of the Neumann-Kelvin Green function

Y. Doutreleau* and J.-M. Clarisset

The Neumann-Kelvin formulation of the linear wave-resistance problem is considered. Due to the
singular behavior of the Neumann-Kelvin Green function, special care is required when dealing with
surface piercing bodies. Consequently, an element integration technique is proposed as a discretization
paradigm. This method, which alleviates the singular behavior of the Green function, is implemented
within the frame of a bounded domain formulation for the Neumann-Kelvin problem. Advantages and
drawbacks are presented, and possible improvements discussed.

A bounded domain formulation for the Neumann-Kelvin problem

We consider the wave-resistance problem of a body moving at constant speed, —Up &, in the half space
z < 0 occupied by an ideal fluid at rest. In the Neumann-Kelvin approach, the velocity potential
is decomposed, in the co-moving reference frame, as the sum Uy ¢ + @., where ¢, is solution of the
Neumann-Kelvin problem.

Panel methods making use of the Neumann-Kelvin Green function, define the perturbation poten-
tial @, in terms of dipole and source distributions over the body boundary I'. The potential ¢., which
has then the following integral representation:

® #eM) = [ [0(P) 05,Gu(M, P) - f(P) Gu(M, P)] T,

where G, is the Neumann-Kelvin Green function, v = g/U¢ and f(P) = Uy (#ip - &), is obtained as
solution of an integral equation on I'.

However, rather than solving this integral equation, we here consider a bounded domain prob-
lem which is derived using a variational formulation/integral representation coupling method [4]. In
addition to its theoretical interest, this approach presents some practical advantages: for example,
equation (1) can now be defined on an arbitrary coupling surface X thus avoiding the 1/r singularities
of the Green function. Furthermore, in order to avoid computing second order derivatives of G, the
bounded domain formulation is herein modified by introducing a potential @;, solution of a Dirichlet
problem in €;, an interior domain of the body (Figure 1-a). Consequently, solving the Neumann-
Kelvin problem for a submerged body is shown to be equivalent to finding the solution (., ®;) of the
problem:

,/Q Ve - Vb — %/S,Zc%tpe azzﬁeds+y/2%¢‘edz /Ffd;edl’
2) + /Q,.V (rf (o) + @) - Vi = - /2 Ve fr F(P)G,dTpdSy
....}/aip'eA‘V(rf:a (9e) + i) - V (= +15,) (G do +.11;/0¢"6/Pf(p) G dTp dosy
\ +/z§53/9,.v (7‘15“ (Soe)+¢i) Y (rl’fa +r§a) (G,)dx

for any test function (%, ¥;). In this formulation, the conventions are:

— Gu(M, P) = (0z,, - +1-)G,(M, P), where i is a complex number of non-zero imaginary part so as
to avoid irregular frequencies;

~ Gy(M, P) = 05,,G,(M, P) (i - &), where 7’ is the vector lying in SL and normal to o at M;
~ rfe(4) is such that rEe(y) =1 on I and rf(4) = 0 on F,, and conversely for rf, .
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Unfortunately, because of the singular behavior of G, (M, P) for P downstream of M, the latter being
on the free surface (see [7]), the equivalence between the Neumann-Kelvin problem and (2) could
not be established for surface piercing bodies. In view of this difficulty, we shall restrict ourselves to
the devising of a discretized formulation of (2) for submerged bodies which remains numerically well
behaved in the limit of zero depth.
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FiG. 1-a: Coupling method F1G. 1-b: Singular behavior of G!,

For this purpose, the bounded domain formulation is solved numerically using a finite element
method: the different terms in (2) are discretized with the help of basis functions w; which depend on
the volume discretization of the domains §; and (2., and on the type of interpolation functions being
used. The singular behavior of the Green function forbids however the use of classical discretization
techniques for the terms of (2) which involves G, (M, P) at its singular regime [1]. Consequently, a
specific discretization method must be devised.

An element integration method

The Green function G, can be decomposed as the sum of a near-field and a far-field component, G,
the latter accounting entirely for its singular behavior. The difficulties which arise when discretizing
the terms involving G, in (2), can be circumvented by first, interchanging the orders of integration
between the points M and P in (2), then, performing analytically the spatial integration with respect to
M. An approach following this principle has also been proposed for the diffraction-radiation problem
with forward speed: see [6]. The present procedure leads to computing analytically the integrals:
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with the notations = 2p — zp, ¥ = Yp — YM, and 2’ = zp + zpr. In performing this task, we benefit
here from the ability of choosing an arbitrary coupling surface ¥. Hence by imposing Q. to be a

rectangular prism (Figure 2-a), analytical integration of (3) is only required for M on 0y and X;—the
portions of o and ¥ directly upstream of the body.
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F1G. 2-b: Discretization of ¥y

FiG. 2-a: Particular choice of §1,

Based on experience with computations for submerged bodies, Lagrange elements of degree 2 are
retained as they provide satisfactory rates of convergence for a limited number of unknowns. Therefore,
evaluating the integrals in (3) for a triangular element 7 = (Mj, M2, M3) of X, is equivalent to
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| (5) Gk(ra a, f) = /L+ (cosh u)k‘l(sinh u)k+1

computing the element integrals:

T.=/ w; 8y Gl(z,y,7) do i=1,2,3
(4) J M3 M;] 3 YV u( 'Y, ) M. ) ’
T? =[]_wj 05y, G (2, 2') dZ1 » T}:/ij G (z,y,7)dSry = 1.6.

For this purpose, we retain the representation of G! used in [2]. We are thus led to consider the
following complex contour integrals:

exp [—% cosh(2u — ia) + i€ cosh u]

du, for k =0..2,

(6) Eg,k'("" a,§, Q) = k=0,1,2

K=1,2,3

with ¢ = v|z|, r = v/y2 + 22, a = arctan (~y/2'), and where L is a path joining —oo to +oo and
avoiding the poles of the integrand. As the integrals G and Ej ,, are similar to the expression of G,
the various approximations described in [2] are extended to the present case. Two complementary
approximations per integral are thus derived which provide numerical results with an absolute accuracy
of at least five significant digits, and this for £ in a range sufficiently large for the present applications.
These approximations consist in: @) convergent series expansions for values of the parameter M =
£2/4r < 16, and b) asymptotic expansions along with highly oscillatory integrals when M > 16. These
oscillatory integrals, similar to that introduced in [8], are evaluated following [5]. The main difference
between G, and the functions G} and EZ’,C, lies in the fact that the latters are defined and continuous
for £ > 0, r =0, |a| = /2, whereas the former is singular there.

exp [—% cosh(2u — ia) + qu + i€ cosh u] . £ ¢=-1,0,1
—=du , for
Ly  (coshu)* (2o coshu — iyg sinh u)F ’

Applications

Submerged ellipsoid

The present element integration approach has been compared, for the case of a submerged ellispoid,
with a classical discretization method as well as with the semi-analytical results of Farell [3]. Wave-
resistance results show good agreement between the element integration method and Farell’s results
for an ellipsoid with an aspect ratio of 5 at a submergence depth of a quarter of the focal distance:
see Figures 3-a, b.
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Surface piercing ellipsoid

Computations with the same ellipsoid, but now half submerged, have been performed. Wave-resistance
results appear to be strongly unstable with respect to mesh refinements. An analysis of the line and
surface integral contributions in (3) furnishes a possible explanation for this behavior. Indeed these
contributions present oscillations near the tracks of the discretization points lying on o1. These
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oscillations, which cannot be resolved with a reasonably fine mesh, render the element integrals Tj
acutely sensitive to the location of the point P. This peculiarity is illustrated in Figures 4-a, b for
the element integrals T3 and 7] associated to the point M; of coordinates z = 1.4, y = 2z = 0 (see
Figure 2-b): significant peaks are clearly visible about the points yp = 0, £0.075. The fact that these
peaks are more pronounced for 7} than for 77, and that their magnitude increases with the distance
£, indicates that they are inherent to the highly oscillatory behavior of G',.

0A~
0.3+
02+

0.1+

T1

00"

Fi1G. 4-a: Behavior of Ty F1G. 4-a: Behavior of T{

Discussion

Analytical evaluations of the line and surface integral contributions in (3) has alleviated the singular
behavior of G!, thus resulting in a proper numerical discretization of the bounded domain formula-
tion (2). However, at this stage, numerical results could not be obtained for surface piercing bodies due
to the strongly oscillatory behaviors of the element integrals 7;. Such behaviors are associated with
the discretization of the boundary ¥, and the particular choice of basis functions with discontinuous
slopes. Significant improvements could be achieved in several ways, namely:
— by performing analytically the spatial integration with respect to the field point P: while this task
does not present further difficulties, the required analytical computations are significantly heavier.
— through the use of C™ elements, m > 0: the current finite element procedure based on Lagrange
element would need to be taylored to such a case.
— through the use of spectral elements: substantial work would be needed to devise a practical
method capable of handling an arbitrary shaped boundary such as I'.
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DISCUSSION

Kuznetsov. N.: The finite element method usually leads to tridiagonal matrix while
matrices arising from discretization of boundary integral equations are complete.
Does the matrix in your coupled approach have the advantage of the FEM to be
tridiagonal?

Doutreleau Y., Clarisse J-M.: No, it's not the case because of the coupling terms
between the hull T and the coupling surface Y. So we have more unknowns than
in boundary integral method, but not so many because in many problems, only one
layer of finite elements is needed. The real advantage of the coupling method
consists in involving no singularities of Rankine type in the Green function.

The second advantage in the precise problem involved in this talk is that we can
decrease the analytical work drastically by choosing an appropriate coupling
surface.
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