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Introduction

Today, most of the numerical codes for the computations of ship seakeeping or for the diffrac-
tion-radiation motions for platforms are solved in the frequency domain using a linear form of
the free surface boundary conditions, called the Neumann-Kelvin approach. The water can be
considered as incompressible and inviscid and the flow around the body as irrotationnal except
on some lines or surfaces, so the Laplace equation is valid in the fluid domain. These problems
can be solved by panel methods using either Rankine (aerodynamic) or Kelvin singularities. For
more complicated (non harmonic) motions, the time domain has to be chosen instead of the
frequency one and in his case, the Green’s function is so complicated (Newman, 1995, Mas et
Clément, 1995) that no computational codes have been developed up to day. But these line-
arized approaches are limited to small harmonic motions with mean constant forward speed
and the body condition has to be satisfied on the mean position of the exact body surface. For
motions with larger amplitudes, this simplification is no more possible and the body condition
has to be satisfied of the body exact position, implying also that the free surface conditions
cannot more be linearized. So these previous problems are fully non linear and the flow
analysis is more easily done in the time domain.

If less developed than the computations in the frequency domain, the calculations using the
time domain (cf Beck ,1994 for review) become more popular with the development of
computers. We present here the first results obtained with a non linear method to compute
transient free surface flows. To reduce the computational time, the surface source distribution
on the free surface and on the body are replaced by source points desingularized, as proposed
by Cao et al.(1990). To check the validity of the method, computations are presented on the
transient flow around a submerged source with impulsive start. The results are compared with
those of linearised computations. Finally some results on a submerged ellipsoid are also
presented.

Formulation of the non linear problem

The flow of an ideal and incompressible fluid of infinite depth is considered with the undis-
turbed free surface located in the plane z=0. The frame of co-ordinates uses the z-axis positive
upwards and the x-axis pointing in the direction of the mean velocity of the body. The surface
tension is neglected. As the problem starts from rest, the flow is irrotational implying the
existence of a velocity potential ¢, satisfying the Laplace equation in the fluid domain. This
potential must also satisfy the body condition on the surface Sy of the body :
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body. A condition of non perturbation when the depth of immersion goes to infinity must also
be satisfied. On the instantaneous free surface, the potential must also satisfy both the kine-
matic and the dynamic boundary conditions ; if the free surface elevation is given by z=E(x,y,t),
those conditions are given by :
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Finally, the fluid disturbance must vanish at infinity, and the following initial conditions have
also to be satisfied : :
¢=0 for 1<0 in the whole fluid domain,and E(x,y,t) = 0 for <0 (4).

The two previous conditions (2) and (3) can be written using the material derivatives, enabling

to compute the variation of a physical quantity following a fluid particle and leading to the
kinematic condition as :
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where X ,,(x(f), ¥(1), z(t),t) is the location of a fluid particle on the free surface. The dynamic

condition can be written as :
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Method of resolution

At each time step, the potential is assumed to be known on the free surface, the real location of
which being also known. Conditions (4) is used at the beginning of this time marching pro-
cedure. For the next time step, equation (5) is used to compute the new free surface elevation
and equation (6) to obtain the new value of the potential on the free surface. So, at each time
step, a new mixed problem with a Neumann condition on the body (known normal potential
derivative) and a Dirichlet problem on the free surface (known potential) has to be solved. To
satisfy the boundary conditions, the body is divided into quadrilateral panels and a part of the
free surface, into rectangular panels. To reduce the computational time, point sources are dis-
tributed on the free surface instead of using surface source distribution on panels. The potential
and the velocity induced by these point sources being singular when the collocation points is
located on source positions, a desingularised technique has been followed (Cao et al., 1990 or
Beck, 1994). So point sources are located into the body or above the free surface. The source
displacement, with distance Ly, is done along the normal to the panel. The choice of Ly is
difficult and the values do not be too large or too small in order to obtain correct results. Beck
(1994) has proposed as optimum value Ly=(S)*> where Sy is the area of the panel containing
the source on the body or the mean value of the areas of the four panels surrounding a source
on the free surface.

Applications

Wave field due to an submerged doublet with a constant mean forward speed

The flow generated by the impulsive start of a doublet (source and sink of same intensity
located 0.1m apart in the x direction) from rest. The forward speed and doublet intensity are
quickly set to their steady values U, and o, using the following relations:

V()y=U,(1-¢") and o(t)=c,(1-¢™) ).

This doublet travels along an axis parallel to the x axis, 1mm deep under the free surface. The
initial mesh on the free surface is located at 0<y<20m and -7.5<x<7.5m and is subdivided into
a mesh of 40x30 panels(figure 1). The nodes are equidistant in the x direction but in the y one,
the distance between two nodes increases of 10%, both in the positive and negative y direction.
The doublet intensity, o is assumed to be known, the unknowns for this problem are the
intensities of the point sources on the free surface. These values are computed by writing that

the potential is given on the free surface. For each time step, a new location of the free surface
and the new distribution of the potential for the next time step are obtained from equations (5)
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and (6). In these equations, the right hand sides are analytically computed because point
sources are used; the time derivatives in the left hand sides are computed by a fourth order
Runge-Kutta method. s

On figure 2, the free surface elevation above the doublet is plotted for 3 values of o, (0.05-
0.75 and 0.9) for a fully converged computations (t=40s), with a time step At=0.2s. The results
obtained with the use of the steady forward speed Green’s function, so corresponding to a
linear and steady computation, are also plotted. It can be observed on this plot that, as the
doublet intensity increases, the non linear wave amplitudes become greater than that the ones
computed by the linear method. The difference is maximum for the first crest above the dou-
blet. The evolution of the free surface is presented on the figure 3 (06=0.05) and for four val-

ues of the time t=4-10-16 and 25s, showing the evolution of the unsteady solution towards the
steady one.

Wave field due to a submerged ellipsoid starting from rest

Computations have been done on a ellipsoid with horizontal axis a=5m and lateral one, b=1m.
The horizontal axis is located at the distance h=1.586m under the undisturbed free surface. In
this case, the mesh on the free surface is made of square panels (40 in the x direction and 20 in
the lateral one). The singularity intensities on the body are obtained from the body condition
(eq. 2). The expression proposed by Beck(1994) for the desingularisation distance has been
modified at both longitudinal ends of the ellipsoid. The evolution of the free surface with time
is presented on figure 4 for a Froude number based on the depth of immersion h,

F=U_/\ gh=126, for 4 time values. After the impulsive start, t=1.8s, a crest can be ob-

served on front part of the body and the level decreases on the rear part. As the time increases,
the wave becomes steepest and a second crest appears immediately upstream of the body. At
t=12s, the shape of the first wave become smoother and the second wave propagates with a V-
shape; at the same time, a second trough and a third crest appears. A second V-shape wave
appears and become important at t=30s, but its amplitude is weaker than the one of the first
wave. Finally at t=45s, a quasi-steady state is obtained.

Conclusion

First results obtained in the time domain using a non linear method to compute transient flows
close to a free surface are presented. The method uses desingularized source points, on the free
surface and on the body, modified at both ends of bodies, to avoid numerical difficulties,
keeping relatively low the computational time. The converged results have been first checked
for a submerged doublet with known strength by comparing with steady calculations achieved
with a panel method using the linear steady Green's function, showing good agreement. The
evolution of the free surface with time has been also studied. The second application presented
concerns a submerged ellipsoid. Work is on progress to optimise the computational time and to
extent the validity of the method to surface-piercing bodies.
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Fig. 3 : Evolution of the free surface
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Fig. 4 : Wave fied due to a submerged ell




