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To predict the transient motion of a floating body on the free surface requires
knowledge of the force acting on it by the fluid. The force is usually found by integrating
the pressure obtained from the Bernoulli equation over the body surface. The difficulty,
however, is the calculation of the derivative of the potential with respect to time, or d¢/or .
Several methods have been used in various publications. Lin, Newman and Yue (1984) for
example obtained d¢/0r by calculating d¢/d . But this method has several limitations. One
is that the same fluid particle has to be followed, which is particularly problematic when
remeshing is applied. An alternative has been adopted by Cointe et al (1990) and Cao,
Beck & Schultz (1994). They obtained d¢/dr by solving a boundary value problem which
1s similar to that for the potential itself. The difficulty with this method is that it requires
the acceleration of the body as part of its body surface boundary condition, which in turn
requires the pressure and therefore d¢/d¢ . This suggests that iterations may be required for
a floating body. Another technique is to combine the boundary value problem for d¢/or
with the equation of motion (Van Daalen 1993, Tanizawa 1995). This will avoid iterations
and the acceleration of the body can be found directly. It will also give the new velocity

and new position of the body, which will then be used for the calculation at the next time
step.

It appears that the method proposed by Van Daalen (1993) and Tanizawa (1995) has

several advantages. In this paper, we shall adopt the principle of their method. But instead
of combining the governing equation for d¢/dr with the equation of motion, we shall
define an artificial function to avoid the need for direct solution of d¢/dr . The method is
very similar to that widely used for the second order diffraction force (Lighthill 1979,
Molin 1979) and has been proved extremely useful. Below we shall derive the equations
based on this method for a three dimensional floating body.

We define a Cartesian coordinate system O-xyz such that the origin is on the mean

free surface and z points vertically upwards. The function ¢, then satisfies the Laplace
equation
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in the fluid domain R. On the free surface we have
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since the pressure is zero. On the surface of a moving body, the boundary condition is (Wu
& Eatock Taylor 1996)
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where n is the inward normal of the body surface, U is the translational velocity, £2is the
rotational velocity and r is the position vector from the point on th; body where U is
measured. On the bottom and at infinity, ¢, satisfies the same conditions as the potential
itself.

Once the solution for ¢, had been found, the pressure could be obtained from the
Beroulli equation
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where p is the density of the fluid and g is the acceleration due to gravitation. The force F

and the moment M on the body could be obtained by integrating the pressure over its
wetted surface Sp

F= L pndS (5a)
M= J'S p(r xn)dS (Sb)

The difficulty here is that the acceleration in equation (3) is unknown before the force has

been found, which in turn depends on the solution of 0¢/0¢ . To overcome this difficulty,
we use the equation of motion. From Newton's Law we have

(M, ]la]=[F]+[F,} ©)
where [M,] is the body mass matrix, [a] is the acceleration matrix with three translational

components ( U )and three rotational components (.Q), [F] is a column with three force
components and three rotational moment components due to hydrodynamic loading and
[F,] is due to other external forces By combining the boundary value problem for d¢/or
[egs. (1)-(3)] and the equation of motion, acceleration can be eliminated, and the solution

for d¢/0t can be found directly. This is the method used by Van Daalen (1993) and
Tanizawa (1995).

Here we propose a scheme which does not need the solution of d¢/dr. We define a
function y; which satisfies the Laplace equation and the following boundary conditions
W,
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on the body surface and

v, = 0 (7'b)

on the free surface, where
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The condition of ¥; on the seabed is the same as that on the potential itself. By using
Green's identity, we have
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The integration at infinity and over the sea bed is zero. Also as y; =0 on the free surface,
we have
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Substituting equations (2) and (3) into this, we have
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Substituting equation (9) into (6), we have
((M,1+[N))al=[Q)+[F,] (10
* where [N] is a matrix whose coefficients are
N‘.i=pLol//‘.nde (11)

and [Q] is a column with
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Based on equation (10), [N] can be defined as the added mass matrix. It is easy to
show that it satisfies the well known identity for the added mass in the unbounded fluid
domain: Nj=Nj;. It can be seen that there are second order derivatives in equation (12).
They are sxmi{ar to the well known m-terms (Timman & Newman 1962). The direct
computation of these terms require special attention (see for example Wu 1991, Zhao &
Fatinsen 1989). Here we adopt the method used by Wu & Eatock Taylor (1987) based on
the equation of Ogilvie and Tuck (1969). Using Stokes theorem, y=0 on the free surface

and V29 =0 we have
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In general, it can be shown that
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Substituting equation (14) into (12), we obtain
0, =] (Vy{WU+Qxr)-n)[Vp—(U +2x1)]+y(2xU)-n}dS
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This removes the need for the second order derivatives.

It can be seen that the core of the above method is the introduction of the artificial
potential y; . This potential satisfies a Neumann condition on the body surface and a
Dirichlet condition on the free surface. They are the same conditions as those on the real
potential ¢ itself. Also y; does not contain ¢ in its boundary conditions. Thus it can be
solved when ¢ itself is solved. This means that the present method does not require
additional CPU and memory. Numerical results will be presented in the workshop.
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DISCUSSION

Ferrant: You seem to infer that Cointe et al (1990) used iterations for the computation of the
acceleration. This is not the case. They use a factorization of ¢; into elementary components
corresponding to unit accelerations in each mode of motion. These ¢;; strangely look like your
%;’s. So I think that there is no difference between what you propose and what has been used

by Cointe et al (among others), except for the use of Stokes theorem (eq. 13 and after in your
paper). Please tell me whether I am right or not.

Wu & Taylor: It is evident that we have overlooked what was said in the paper by Cointe
et al. Having read the paper carefully again, we now realize they did not use iteration in their
scheme, as implied in our abstract. We hope that the authors will accept our apology.

Concerning the second point of the discusser, we have now also realised that there are some
similarities between our scheme and that of Cointe et al., but there also appear to be some
significant differences. Cointe et al. defined quantities ¢; corresponding to unit accelerations.
However, from their paper it is not clear what free surface boundary condition is imposed on
those quantities. As the free surface boundary condition (pressure being zero) contains the
potential itself, the boundary value problem can be solved only after the potenttial has been

found. In our scheme, however, the quantities ¥ can be be solved at the same time as the
potential itself.




