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1 Introduction

The Cauchy-Poisson Problem has been studied at these Workshops for many vears. In
particular we have been interested in the behaviour near the wavefront in the axisymmet-
ric problem. and we only recently succeeded in finding a uniformly asymptotic expansion
(for large non-dimensional times) which joined up smoothly with the stationaryv-phase
expansion behind the wavefront, see [CNU 1995]. These expansions give a clear qualita-
tive picture of the behaviour near the wavefront, of the same kind as Fresnel's treatment
of a shadow boundary in optics. and Airy’s treatment of a caustic. Since then Newwman
has followed up this theoretical treatment by unpublished numerical studies. in which he
has compared the relative accuracy of the stationary-phase and uniform Airyv expansions.
These studies have shown that these asymptotic expansions do not agree closely unless
the "large parameter” is indeed large. Which of the two is then correct. or are they both
inaccurate ? It is of interest to examine this question theoretically. because the Cauchy-
Poisson problem is typical of many problems in ship hydrodynamics, e.g. the Kelvin ship
wave problem. In the present note we shall consider some of the characteristic defects of
asymptotic expaunsions. and this is the purpose of the present note.

2 The Cauchy-Poisson problem

An instantaneous localized impulse acts on the free surface of water of finite constant
depth k. the subsequent wave motion is to be found. In both two and three dimensions
the solution for the velocity potential ® due to an initial impulse is easily found by
the method of separation of variables. Here we shall consider only the two-dimensional
problem, similar considerations apply in three dimensions. We find that

coshk(h — y)
cosh kh
in an obvious notation, from which it follows that on the free surface

o(z,y.t) = A ~ cos(t{gk tanh kh}"2) cos kz d..

o(2.0,t) = [x cos(t{gk tanh kh}*/?) cos kx dk.
)

By introducing non-dimcnsional parameters X = z/h and T = t(g/ h)Y? we sce that we
need to find integrals of the form
[ exp (iT{(k taul k) & alc}) k.

where « = X/T. We shall coufine attention to the iutegral

/x_ exp (iT{(l\' tanh )% — uk}) dk.
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or more precisely the convergent integral

x expl=7mifd) o
/ ! oxp (iT{(l.‘tanh J)\? - al.-}) dk.

¢ exp(hwi/d)

which is the dominant integral when T is large. as is casily seen. This is a function
of the two parameters T and a. and for small T and « it can be computed by direct
numerical integration. As T increases the integrand oscillates more and more rapidly.
and an ever-increasing number of significant figures needs to be retained in the numerical
integration. We know that asymptotic expausions are specially appropriate when one of
the parameters is large. When there is a second parameter a. as in our problew. then the
asymptotic expansion typically involves functions of a single variable which is a function
of T and a. (In our problem these functions are cither circular functions or Airy func-
tions. multiplied by simple decay factors.) This suggests a question. not cousidered here:
Given an integral involving two paramecters. when one of the parameters becomes large.
does an asymptotic expansion necessarily cxist ? (Probably not.)

In our problem the integrand is an exponential. for which the appropriate method is
the Method of Stationary Phase or its complex-variable version. the Method of Steepest
Descents. The phase is

®(k.a) = (ktauh k) — ak.

an odd function of k. The phase is stationary when d®/9k = 0. an equation with a pair
of equal and opposite roots ky(a). When ¢« =1 . (i.e. at the wavefront .) these roots
coincide at k = 0 : when 0 < « < 1. (behind the wavefront) the roots are rcal and give
rise to sine and cosine terms: when 1 < « < oc .(alhead of the wavefront) the roots are
pure Imaginary. only one root is relevant and gives rise to an exponential decay. Near
the wavefront the two saddle points are nearly coincident. and the asymptotic expansion
then involves Airy functions instead of expouentials. Such an expansion can be chosen
50 as to be uniform. i.e. so as to join up swmoothly with the stationarv-phase expansion:
see [CFU 1957] . As we have already noted. the numerical precision of these asymptotic
cxpansions is not adequate unless the “large parameter” T is indeed large.

3 Difficulties with asymptotic expansions

FIRST DIFFICULTY'. In a convergent series the accuracy can in principle be increased
indefinitely by taking more and more terms. In a non-convergent asvmptotic series suc-
cessive terms initially decrease to a smallest term (depending on T). then increase. Once
the smallest term is reached the accuracy cannot be increased further by taking more
terms. Even when the series is carried as far as its smallest terms the accuracy may not
be good unless T is quite large.

SECOND DIFFICULTY. In owr problews the coefficients (which are functions of «)

are complicated and are not easily found.
THIRD DIFFICULTY. In the region of overlap both the stationary-phase expansion
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and the Airy expansion are valid. Which is more accurate ?
This poses the question: Why do successive terms in our expansions decrease so slowly.

and what can be done to obtain better expansions ? What determines the rate of decrease

of successive terms 7

Consider the simplest case of the Method of Steepest Descents. i.c. Wartson's Lemma.
the expansion of au integral of the form

/x g(k)exp(—=Tk)dk
JO

for large T .To obtain the asymptotic expausion. we expand ¢(k) in a power series,

g(k) =3 gmh™
0
and obtain ) o :
" (k) expl=Th)dk ~ S g o
A g(k)exp(=Tk)« 2 9o e

The rate of decrease of successive terms is thus secn to depend on the rate of decrease of
the sequence of coefficients {g,, }. and it is well known thar this depends on the distance
R of the nearest singularity of g(/) from the origin & = 0 in the complex k-plaunc. It
follows that g,, is roughly of order R™™. For Watson's Lemma we can find the precise
remainder after A terms in the form of a double integral. but this is not necessarily
useful because. as we have already seen. the remainder in an asymptotic series canuot
be decreased indefinitely by increasing the number of terms. It would help if we could
subtract out the contributions of the nearest singularities. but this hias never vet been
doune successfully.

FOURTH DIFFICULTY. These difficulties relate equally to stationarv-phase and Airy
expansions. for there can be little doubt that the coefficients of the uniform Airyv-tyvpe
expausion have similar properties. with the additional complication that successive coeffi-
cients are not now explicit from a Tayvlor series but are determined by a Bleistein-sequence.

FIFTH DIFFICULTY. Proof of the validity of the Airy-type expansion. The present
proof [Ursell 1972] is applicable ouly under assumptions which are not satisfied in our
present problem. We confine oursclves to the uniform Airy expansion which joins up
smoothly with the stationary-phasc cxpansion. As is well known. this is found by intro-
ducing a new implicit variable of integration u such that

lll3 - (Yu.
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where n is a certain analytic function of 1 — a. Our integral is thus transformed into the
canonical form

O(k.a) =

Cexplwi/6) g 1 .
/l * Go{ 1. v)exp (iT(;;(l" - au)) du.

JxooxpiSni/6

where o is swall near the wave frout. In this integral we have

Golu. o) = 3k [0u.
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a very complicated implicit function which needs to be expanded in a Bleistein sequence.
This function is found to have four braunch poiuts not far from the origin v = (). with a
resultant slow decrease of successive terms. On the other hand. the standard proof of the
validity of the Airy expansion assumies that the coefficient fuuction Gy(u. a) is analyvtic
everywhere. How can this standard proof be modified ? Uulike the other difficultices.
previously listed. this might be capable of solution.

4 Conclusion

We Liave seen that our difficulties with asymptotic expaunsions of integrals occur because
of singularities in Watson's Lemma.( often due to additional complex points of stationary
phase in the A-plane not far from # = (.) or equivalently the occurrence of singularities
not far from v = 0 iu the w-plane . We do not yet know how to deal with these effec-
tivelv. The obvious treatment . when the “large parameter™ T is only moderate. is by
very accurate methods of direct quadrature. Another method is through the ideas of
hyperasyviuptotics. i.e. the summation of terms bevond the smallest term in the asymp-
totic series. Little progress has so far been made. While the difficulties are apparently
coucerned with questions of pure-mathematical techniques. asymptotic expansions nev-
ertheless give much useful information about physical behavionr. Thus the notion of
group velocity originated from the mathematics of stationary phase. The Airy function
which defines the development of the wave motion near the wavefront originated in the
treatment of the caustic in optics.
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