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1. Introduction

It is wounded that the third order force is an exciting source for the "ringing" phenomenon, observed on some
offshore structures. The calculation of third order force needs the information of first and second order potentials on the
whole free surface. For the second order problem, Kim and Yue (1990) and Eatock Taylor and Chau (1992) used direct
methods to calculate forces afier resolving the second order potential on body surface. But for the second order potential
on the whole free surface, the method is very expensive and not practical.

Another method proposed by Kriebel (1990) is to represent the second order potential in an explicit form. After
getting a wave number spectrum, the second order potential at any point can be determined easily. Then, third order
forces can be obtained by an indirect method which is an analogue to the indirect method for second order force. In this
paper, further analysis on the wave number spectral function is made. It is found that there are three waves with different
wave lengths in its integrand, and the function goes to infinity at the wave number of twice of the incident wave number
when water depth is not infinity. Based on the analysis, effective methods for calculating the spectral function and
removing the singularity are proposed.

2. Formulation
We divide the second order potential into the incident potential @', the particular solution ¢°, which satisfies the
inhomogeneous boundary condition
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on the free surface, where ® is wave frequency and 4 is the wave amplitude, and the homogeneous potential ¢*, which
must be determined by the boundary condition on the body surface.
The inhomogeneous potential is obtained by integrating the forcing on the free surface with Green's function
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k, k, are the real roots of wave dispersion equation at wave frequency and double wave frequency, and a is the radius
of water plan of an axisymmetric body. The homogeneous solution can be easily obtained by assuming the particular
potential as an incident potential.

3. Analysis on D,
The calculation of D, is the key o the present method. By some transform, the spectral function D,, can be

represented as
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When &r is big, Hankel function can be approximated by its asymptotic representation
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~ The integral of triple product of Hankel and Bessel functions from a big value b are
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It can be seen that in the integrand there are three waves with wave numbers of 2k+ £, 2k- /£ and (. The leading term
of the above integral has the form
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The signs in the second term of the right-hand side depend on if 4 is larger than 2k or not. It can be seen that [,
approaches a constant when £ approaches 0, and to infinity with a speed of 1/}2k- 2{'? when u approaches 2k. However,
for the spectral function D,, the singularity can be canceled by the coefficient in equation (6) when water depth is deep.
In finite water depth, the singularity at 2k can be removed by changing variables *={2k- 4. For the convenience in
numerical calculation, the following method is applied
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for the integration at the vicinity of 2k.

Numerical Examination

The integrand of the spectral function D,, is an oscillating function with the increase of the distance from the
body, and its amplitude decays slowly at the rate of Z/r'2, The earliest computing method is just to truncate at a large
radius. Later, a technique was proposed to separate integrating domain into near and far field domains, and in the far
field to integrate to infinity analytically after using the asymptotic representation of Hankel function. However, for the
present problem, when £ is very small or 4 approaches 2%, the longest wave length is very long, and for a convergent
result the radivs of the near field should be so big that the method is hardly to be used.

Figures 1 to 4 show the mode 1 and 5 of D, at £/k=0.2, gotten by different methods. It can be seen that to
truncate the integration domain at will will introduce a big error even when R/a is very big, say R/a=160. However, with
the increase of the radivs of integrating domain, the integral oscillates about and converges to the value obtained by
integrating to infinity. The method used in this research is to take an average of the function in one wave length of the
longest wave. It can be seen from the figures that when the starting point is not small, the averaged value is very close
to the value obtained by integrating to infinity. This method can also be used for the second order difference frequency
problem in bichromatic waves, when difference frequency is very small and the asymptotic representation of Hankel
function is hardly used.

Figures 5 and 6 show the distribution of the mode 1 of D, versus wave number. It can be seen that when
truncating at R=30a there are a lot of oscillation, but are very smooth after averaging. It can also be seen that at £ =0
the function goes to a constant and to infinity at 2=2k. The imaginary part of D,, also goes to infinity in different
direction when £ approaches 2k from different side.

After getting the wave number spectrum, second order potentials and forces can be obtained easily. The Table
1 shows the comparison with the Eatock Taylor and Hung's (1987) on the part of second order force from the particular
solution and its corresponding homogenous potential. For the cylinder with a draft of h/a=1, a mesh of 16 (4x4) elements
on a quadrant of the cylinder is applied, and a mesh of 24 (4x6) elements is applled for the cylinder with a draft of
h/a=10. It can be seen the results agree each other.

Table 1. Comparison on second order forces

Present Results Eatock Taylor's!
8930E04 .8553E04 | .1016E05 .7490E04
2336E05 -.1485E05 | .2311E05 -.1614E05

J849E05 .2744E05 | .2099EQ5 .2670E05
4634E05 -2612E0S | .4829E0S -.2977E05
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