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1 Introduction

The numerical treatment for full nonlinear wave sim-
ulation was firstly given by Longuet-Higgins in 1976 and
well known as Mixed Eulerian and Lagrangian method
(MEL). Detonated by this break through, many time do-
main simulation methods for nonlinear waves and fluid-
body interaction problems were developed in past two
decades. The first consistent simulation method for two
dimensional fluid-body interaction problem was developed
by Vinje & Brevig ? in 1981. They showed the idea to
solve the simultaneous equations of fluid and body mo-
tions by decomposing of the acceleration field into four
modes corresponding to the unit acceleration of the three
body motions (heave sway and roll) and the other accel-
erations like the centripetal acceleration due to the fluid
velocity. The authors developed further rational method
to solve the simultaneous equations of fluid and body mo-
tions in the acceleration field in 1990 3. The authors
introduced the implicit body surface boundary condition
derived from the kinematic body surface boundary condi-
tion and the equation of body motions, and showed the
simultaneous equations of ideal fluid motion and float-
ing body motions could be solved without decomposi-
tion. Van Daalen also came up with the same idea in-
dependently in 1993 ®. In 1995, the author introduced
Prandtl’s nonlinear acceleration potential, formulated the
boundary value problem on the acceleration potential and
clarify the physical meaning to solve the acceleration field
9,10) " As an application, the numerical simulation method
was also given. Following these works, the multiple fluid
domains and body interaction problem is formulated in
this paper. Numerical simulations based on this formula-
tion are also presented.

2 The formulation of the boundary value
problem on the acceleration field

At the last workshop, the author introduced Prandtl’s
nonlinear acceleration potential ¢ defined as
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and showed the acceleration of fluid a is given by the
gradient of the acceleration potential as a = V& . The
boundary conditions for this acceleration potential were
also given as follows.

Kinematic body surface boundary condition of & is
given as
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where NN is the generalized normal vector of the body
surface, a is the generalized acceleration of the body and
¢ is the term due to the fluid velocity. Using the velocity
potential ¢ , ¢ is written as
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where k, is the normal curvature, v, and w are trans-

lational and angular velocity, n is the unit normal vector
of the body.

The acceleration of the body a in equation (2) can be
eliminated by Euler’s equation of 3-D solid body motions
coupled with fluid motion
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where M is the generalized inertia tensor, B8 is so called
Gyro moment, [ (—®—Z) Nds is the generalized fluid
force and F, is other forces (thrust,gravity,etc.). Sub-
stituting equation (4) into (2), the implicit boundary con-
dition on body surface is derived as
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This condition gives the relation between the acceleration
potential & and its flux 8#/0n on the body surface.
Since the nonlinear acceleration potential is the hydro-
dynamic pressure, the free-surface boundary condition is
simply written as
Don Js. = -Z (6)
Detail of this formulation is presented in the reference
paper 10).




3 The extended formulation for multiple
fluid domains

The above formulation of the boundary value problem
on the acceleration field can be extended to multiple fluid
domains and body interaction problems. Let us denote
a fluid domain as Q, and variables of the domain as
Ox. Pr etc.

Fig.1 Fluid domains inside and outside of a ship

Similar to equation (2), the kinematic body surface
boundary condition of the domain 2, is written as
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where NN, is the generalized normal unit vector of the
boundary which points to the outside of domain €, .
The total hydraulic force acts to the body F; is given
as the sum of the hydraulic force of each fluid domain

v
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where v is the number of fluid domains and p,. is the
nondimensional density of fluid domain €, . So, the gen-
eralized equation of 3-D body motions coupled with fluid
motion is written as

Ma+p= }:/S pr(—®x — Z) Nods+F,.  (9)
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Eliminating the acceleration of the body from equation
(7) and (9), the implicit body surface boundary condition

is given as
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This is the extended implicit boundary condition which
connects the motion of body and motion of fluid inside
and outside of the body.

4 The alternative formulation for numer-
ical methods
Because of the nonlinear term in equation (1), the ac-

celeration potential & does not satisfy Laplace’s equa-
tion. So, @ is not adequate for numerical method like

BEM. But this nonlinear term of @ can be explicitly de-
termined from the solution of velocity field. Therefore it
is not necessary to solve the nonlinear part with @ . Let
us subtract this part from ¢ and put linear part as
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Now, ¢, satisfies Laplace’s equation. So, with given
boundary conditions, boundary value problem on ¢, is
easier to be solved than that on @ . The boundary condi-
tion for @, is easily obtained from equation (7),(10) and
(6) as follows.

¢ Body surface boundary condition
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¢ Implicit body surface boundary condition
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o Free-surface boundary condition

bt = —7 — -;-(Vd:,;)'“' (14)

5 Numerical Simulations

In order to demonstrate the capability of the simula-
tion method based on the above formulation, three types
of two dimensional fluid body interaction problems are
simulated. The target of the simulation is large ampli-
tude transient motions of midship section body with three
different loading conditions illustrated in Fig.2 as Cal.l,
Cal.2 and Cal.3.

Cal. 1 Cal.3

h=025m

=10m

D

~ L=40m L
Floating body Fluid Solid cargo
m =36.0kg p1 = 1000 kg/m® p = 800kg/m°
i =255kg-m? pr= 800kg/m’ Gravity
pa= 800kg/m? g =9.8m/s?

Fig.2 The target of the numerical simulation




In Cal.l, solid cargo is loaded. In Cal.2, fluid cargo is
loaded in a single tank. And in Cal.3, the same fluid cargo
is loaded in two tanks. The incident wave is generated by
a piston wavemaker attached to the left side of the tank.
The motion of the wave maker is plotted in the figure.
These problems are nondimensionalized using the width
of the floating body B, the density of the fluid outside
of the body p; and the gravitational acceleration g as
units.

First of all, comparison of the simulated body motions
among these three loading conditions are presented in
Fig.3. Corresponding to the loading condition, the dif-
ference can be observed in the body motions. In particu-
lar, significant difference can be found between Cal.1 and
Cal.2 in roll motion. The fluid motion inside the body af-
fects sway and roll motions strongly in this case. On the
other hand, no significant difference can be found between
Cal.1 and Cal.3. This result shows the partition between
two fluid tanks effectively reduce the strong interaction.

Next, the simulated instantaneous free-surface and
body motions in seven different time from t = 9.27 to
t = 15.45 are shown in Fig.4a,4b and 4c. These three
figures show that the transient body motions and fluid
motion inside and outside of the body are quite large in
all cases. Particularly, the amplitude of the relative water
level at the weather side of the body are large.

This method solves the boundary value problem on
¢1 . Therefore, it is easy to compute distribution of ¢,
inside of the fluid domains. A contour plot of ¢, , it is
identical to the contour plot of hydrodynamic pressure, is
shown in Fig.5. This plot shows the same instance of the
last plot of Fig.4b.

This simulation method also gives us the pressure time
history of any points. Fig.6 shows the pressure time his-
tory of inside and outside of the body at the intersection
of calm waterline and the weather side of the body. When
the intersection point is above the water surface, the pres-
sure is zero. The difference between the pressure inside
and outside is important for ship design. Such a kind of
information can be also computed by this method.

Last, the conservation laws of momentum and energy
are checked in Fig.7. The upper two plots show the bal-
ance between total fluid momentum and total impulse
given from the boundary to the fluid in the simulation of
Cal.2. And the lower plot shows the balance between total
energy of the fluid and total work in the same simulation.
These plots demonstrate that momentum and energy con-
servation are well satisfied. The volume conservation error
is also very small, less than 0.016% in Cal.2.

6 Concluding remarks

The formulation is extended to multiple fluid domains
and body interaction problem. As a demonstration of
this new method, two dimensional large amplitude float-
ing body motions are simulated and the conservation laws
are checked. The results show that this method has excel-
lent accuracy even for the large amplitude multiple fluid

domains and body interaction problem.
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Fig.3 Floating body motions




swt

1me
_n, ,-—\_D_____ [
w S04 3
aw
BRI - +
-3 -2 [ ° ) 3
s1e's
193030 [
PR
1104
310" v - -
B -2 R} 0 1 N
s
=0y
o' .‘—/B
w s
-11€ 4
REITS ¥ =
Y T T
3 2 A ° 1 2 3
$10°+
te12% [
o] % s
st
e
1510° - v - Y y
-3 -2 -1 ° 1 2
s10t
tei [
out r—-\D—-\- [
n 53004 . L
1104 L
15100 T - ; - -
B -2 - ° 1 : 3
st
tm154s
o' T—A‘D—___ L
5107 4 L
-1t -
RES - T
- 2 -1 ) 1
s107
te1s4s [
- \J&__
w5100
110 4
1510° T r - = -
k] 2 1 0 1 2

Fig.4-a Simulated fluid and body
motions (Cal.1)
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Fig.4-b Simulated fluid and body
motions (Cal.2)
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Fig.4-c Simulated fluid and body
motions (Cal.3)
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DISCUSSION

Ferrant: Do you intend to produce 3-d results, as one could expect from the title of your
paper?

Tanizawa: Yes, I am developing a 3-d code and will show 3-d results in the near future
hopefully.




