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1. Introduction

In recent years many studies have been carried out solving the unsteady ship motjon
problem. This problem is very important in predicting the behaviour of a ship|in
real sea-keeping, which includes the interaction between waves and the velocity| of
a ship. Computing this interaction can be done by using the frequency domain|or
the physical time domain. The disadvantage of the studies in the frequency domain
is their restriction to harmonic waves. Real waves are not harmonic. In the time
domain we can also handle non-harmonic waves.
Prins [2] developed a two- and three-dimensional time-domain algorithm to compute
the behaviour of a cylinder, a sphere and a commercial tanker in current and waves.
The results are satisfactory. We have extended this method with, among other
things, a frequency independent absorbing boundary condition [3].
Our next goal is to apply the method to a LNG carrier at service speed. The forward
speed of the commercial tanker considered up to now is very low, the maximum
Froude number is 0.018, i.e. 2 knots, while the usual speed of a 125,000m® LNG
carrier is about 20 knots (i.e. Froude number is 0.2). This fact causes some problems
in our algorithm. We study increasing speed and the the effect on our absorbing
boundary condition. To remove the instabilities on the free-surface due to increasing
forward speed, we introduce upwind discretization. Both cases were done in the two-
dimensional algorithm. Some results of the tree-dimensional algorithm will be shown
at the presentation.

1. The absorbing boundary condition

The physical fluid domain is infinite (or large). The computational domain cannot
be infinite, so we have to introduce artificial boundaries and proper boundary con-
ditions. In the literature several methods have been proposed to absorb free surface
waves. Keller and Givoli [1] introduce a method which use an artificial boundary,
dividing the original domain into a computational and a residual domain (the in-
terior and the exterior). In our method we use a boundary condition independent
of the wave frequency, using the idea of the Givoli’s method with Prins’ algorit

Like the interior, we also discretize the free surface of the exterior by dividing this
into panels. We developed a special Green’s function in the exterior. The condition
absorbs the outgoing waves. The method also reduces computer time, when com-
puting the behaviour of an object in harmonic waves. Firstly, the boundary will be
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closer to the object and, secondly, it is not necessary to implement the conditions
dependent on every frequency. We are also able to use a step-response function to
calculate the hydrodynamic coefficients and are able to calculate the drift forces and

wave drift damping,.

The advantage of using our algorithm compared to using the conventional [time-

domain Green’s function in the exterior, is that it will be easier to implemexﬁ; the

effects of higher speed, because the boundaries of the exterior are already di
into panels.

In our first set up [3], we assumed
the interior to be moving together
with the object, while the exterior
was fixed to the earth. To solve the
problem in the interior as an overall
matrix equation, we applied Green’s
theoremn on the domain between the
boundaries, see figure 1.

FIGURE 1: The 2-D geometry
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In our new set up we assume the exterior also to be moving together with the object.

In the exterior we get the following linearized free surface condition

¢tt+g¢z+2U¢zt+U2¢u=0 at 2=0.

(1)

Where ¢(a,t) is the unsteady potential and the steady potential is approximate by
the undisturbed flow potential Uz. We use the following discretizations for the time

derivatives
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with superscripts denoting the time level. Now we may write equation (1)
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We use an upwmd discretization scheme calculate the numerical differentiatior

)
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the potential (see next section), and solve our problem by using Green’s theorem,

the same way we did in our first set up,

.D]'l,b"-H — Dz‘l/)n + D3,¢,n—1 + fn+1 + ED& ,
with 1 a vector containing (¢s|dx|¢s|és,) and Ep@ is the right-hand side of (

3)
2).

The reflections due to the artificial boundary are with both set ups are both very
small, less then 3% of the total surface elevation, when the boundary is one wave-
length away from the object. The advantage of the second algorithm is that is will
be easy to implement the effects of the double body potential. The right-hand side

of (2) will then also contain terms of the double body potential.

. (2)




3. Upwind discretization

Increasing the speed, the potential
is showing point-to-point oscillations.
In figure 2 and 3 is shown that the
potential shows local extremes, after
one period ol forced oscillation in the
heave direction, if the Froude number
Fn > 0.50. These numerical oscilla-
tions arise. when we use central dis-
cretization.
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with subscripts denoting the element
number of the clockwise numbered uni-
form mesh (like figure 1), with mesh
size Ax. These oscillations, called wig-
gles, occur in the stationair convection-
diffusion equation, when the Péclet
number Pe = UL/k is large and in the
instationair convection-diffusion equa-
tion, when the Courant-Friedrichs-
Lewy number CFL = UAt/Az is
large. To remove these numerical
instabilities upwind discretization is
used or artificial viscosity is added.
We noticed that in our case also the
CF L-number plays an important role
in the determination of stability of the
scheme. For increasing values of the
C F L-number the scheme becomes un-
stable. Therefore it seems to be that
our problem will also be solvable by
using upwind discretization and we re-
place the central discretization in our
algorithm by

¢ — di1
Ax

This is called upwind discretization,
because it is biased in upstream direc-
tion. Now the wiggles disappeared, see
figure 4.
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FIGURE 2: The potential, using cen
tral discretization, Fn = 0.2
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FIGURE 3: The potential, using cen
tral discretization, Fn = 0.5
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FIGURE 4: The potential, using up
wind discretization, F'n = 0.5




To get more accuracy we can also use second-order upwind discretization. And less
necessary, but also possible is to use upwind discretization for the second derivative.
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4. Conclusions and further research !i

In our two-dimensional algorithm, we get good results increasing the speed using

our boundary condition with an explicit time derivative. More increasing the speed

gives numerical instabilities and using upwind discretization makes them disappear,

In the future we will carry out the stability analysis.
Our goal is to calculate the behaviour of a LNG carrier, so we also have to a;Eust

our three-dimensional algorithm. Applying the speed dependent absorbing bound-
ary condition in that algorithm is the same as in the 2D algorithm. In the|two

dimensional mesh it is easy to see which element is in the upstream direction of

another element. In our three-dimensional mesh of the carrier it will be more com-
plicated, see figure 5.
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FIGURE 5: the mesh of the LNG carrier and the free surface
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DISCUSSION

Clement: In 2D applications, your computational domain is moved in the same directi n as
the waves to be absorbed at the boundary, but in 3D, it is not the case and waves exit the box

with an incidence angle. Is it a problem with regard to wave absorption? Could you com

ent
this point?

|
Sierevogel and Hermans: In our 2D algorithm the computational domain is not moving in
the same direction as the waves, but in the same direction as the current. Thus the computa-
tional domain is fixed to the body. Also in the 3D case the domain is fixed to the body. We
absorb the outgoing waves by using an exterior domain. In our first 2D setup, the exterior
domain did not move, thus was fixed to the earth. This gives some problems in the 3D ste,
so in the new setup and the 3D-case the exterior is also moving with the body.
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