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SUMMARY : Iu the past, the wave resistance problem of symmetric thin mono- or twin-h
at moderate to high Froude mumbers on the free surface of an ideal liquid, could be

the wave resistance of a ship could be directly related to her hull form characteristics, thus
set up efficient hmll form optimization procedures (see, e.g., Papanikolaou and Androul i
FAST’91 Conf.). In the practice of catamaran design, however, many hull forms, developed mainly
by intuition or semi-empirical procedures, are adopting non-symmetric demi-hull features, therefore
an extension of the original Michell’s and Stretenskii’s theory seems, at least for the ose of
understanding the physics of the problem, long time overdue. The present paper addresses exactly
this dassical problem of wave resistance theory by extending Michell’s approach to consider non-
symmetric hulls through inclusion of a normal dipole distribution on the demi-hull’s oent:%:lane and
by deriving an approximate solution for the resulting first-kind hyper-singular integral equation for
the dipole strength. Since the simple structure of Michell’s original wave resistance formula could be
retained, the present theory for non-symmetric catamaran forms enables the further application of
efficient hull form optimization procedures, as known from symmetric hull form design.

THEORETICAL BACKGROUND: Consider the potential flow caused by a twin-hull floating body
B moving with constant forward speed U on the, otherwise undisturbed, free surface of an ideal liquid
of infinite depth and extent in a uniform gravitational field (g will indicate the acceleration due to
gravity). The body B = ByU B, is assumed to be thin, ie., the (common) length L of the
hulls (B, B;) is mmch greater than their (common) beam B. This geometrical assumption can be
accurately formulated by attributing the role of the perturbation parameter ¢ to the geometrical ratio
B/L, that is,

B/L=¢ 0<egl, @

and correlating it asymptotically with the second geometrical ratio T/L ~ T being the (common)
draft of the two demi-hulls ~ and the Froude number F,. = U/+/gL, which is the fandamental physical
non-dimensional parameter of the flow yunder consideration. In the present work we assume

T/L=0(1) and F,=0(1) with respect to ¢, @)

where O is the ane of the two dassical Landau order symbols O (big oh) and o (little ch).

We shall restrict our attention to that part of the flow field, which is time invariant with respect
to a Cartesian system of co-odinates OZ; #;%; fixed to the body B(e) with the OZ; axis drawn ver-
tically upwards, the OZ,; Z; plane lying on the quiescent liquid surface and the OZ; pointi g to the
direction of the motion of the body. With respect to this system reference, the liquid motion is char-
acterized by the velocity potential &(%), & = (£;,%2,%3) € D, D being the region filled by the liquid
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and bounded by the free surface 0D, taken to be a non-parametric surface with respect bo‘quiescent
liquid surface #3 = 0, namely Z3 = j(Z'), &’ = (%;,%,). Since dim(B(¢)) = dim(B(0), the problem
of determining &(%) and #(%') can be handled by appealing to the techniques of regular perturbation
theory. Introducing the non-dimensional variables: z; = Z,/L, £ = 1,2,3, &(z) = &(3)/¢'/2L*/3 and
n(z’) = #(2')/L, and exploiting the fact that, for a thin Imll with slowly varying shape lengthwise,
the z;-component of its outer (with respect to the liquid) normal vector n = (ny,n2,n3) is asymptot-
jcally small, namely n; = O(¢), we arrive after simple asymptotic reasoning at the following result:
the velocity potential ®(z;¢) and the free-surface elevation 7(z';¢) admit of the following
asymptotic approximations:

B(z;€) = Bo(z;€) + o(Bo(zi€)), Bo(z;€) = O(e), =z € D(0), (3)
7(z';€) = m(z';€) + o(mo(z';€)), mo(z';€) = O(e), =z € IDK(0), @
where .
no(z';€) = Fr 8o,1(z;¢), 2z’ € 0Dp(0), | )
. . |
and &(z;¢) satisfies the following boundary value problem: '
$o,11 + Po,22 + o33 =0, =z € D(0), (6a)
Bo,2 = —€F, as z3—(— ar +)s+
0,2 1 or 2)21 2—( ) , zedDE, _,0O) . (ob)
Bo2 = +€Fr flz or )1 38 Tp—(— o +)s—
K™ &1 + 803 =0, 2€0Dp(0), K=F, - 69)
§O,l"’or £= 12,3, | T3— — 00, (Gd)

Radiation condition (R) : the energy flux associated with the disturbance of

(6¢)

the moving body is directed away towards z3— — oo.

while 'D(O) denotes the open domain bounded by the quiescent liquid surface z3 = 0 and the flat
surface pieces oDE, (0), i = 1,2, to which degenerates the wetted surface of the two demi-hulls at the
limit € = 0. DY (e) is represented as

The subscript £ after a comma denotes partial differentiation with respect to the space varijtle ze,

Ty = =8 — efé(m;,za), 2, -8

{zz = ~s+€fi(z1,23), 32— } y (z1,23) €Q, )

with Q being the projection of D}p (0) cnto the center-plane a:z = 0, and analogously for 81 ,(0).

Finally, 0Dp(0) denotes the open planar domain {z3 = 0}\U,_1 $.(0;z3 = 0), where 9D}, () T3 =
0) is the dit representing the degenerate waterline of 0D, (0), i = 1 2.

Let G(z;€), = = (71, 22,%3), £ = (£1,£2,€3), be the Green function, also referred to as the |Kelvin
source, associated with the Laplace field equation (6a), the linearized free-surface condition (6c), the
“bottom” boundary condition (6d) and the radiation condition (6e). Furthermore, let the sep%ration
distance 2s, between the axes of the two demi-hulls, be large enough so that local interference |effects
can be neglected. It can then be proved, with the aid of potential theory, that: the leading-order
potential &(z¢;¢) can be approximately decomposed as below: .

Bo(z;0) & B0 (56) + Toa(zie), = € DO), ®

where -

S (1) GO
‘I’oi(?#)=€Z1r"/8vg.(o)a(z,f)(f1.1 + fan)d€ - = /avgl(o)v'(g’e) o, d¢, i=1,2. (9a)




Here vy (z;¢€) is the soiution of the following hyper-singular integral equation of tﬂe first kind:

8%G(z; £)

eFr(fon = f11) = —1— n(§€)——z--df, z€dDE (0), (90)

D3 0) 0z206; !
with the double-dash signifying the finite part of the indicated integral, accordi g to Hada-

mard, and

va(zy,8,23;€) = v1(z1, —s,z3;€), (21,23) € . || (9c)

An asymptotic approxlmatmn of the dipole distribution v, (z;¢) can be easxly obtaxneld by assum-
ing that the demi-hulls B;(¢), i = 1,2 are not only thin but a-bit-slender too, i.e., |

T/L=€1, g=¢,0<a<l II (10)

Assume now that v (§;,£3) is twice continuously differentiable in 2 and take its two-term Taylor
expansion around the point (z;,z3). Substituting this expansion into the right-hand side of (9b), and
taking into account the following expression for the Kelvin source:

6@0 =g

where H,.g(z;§) is the so-called regular part of the Kelvin source, we arrive at an integrc:;differential

+ Hyreg(z;€),  23,63€(—00,0], (11)

equation for v4(zy,23). After careful asymptotic analysis, one can show that the formula:
-1

2
v PP (@1, 23) = dmeFr(fa, — fl’l)[favv © 3::062 (r(zl;f))] o bomlefh 63

provides indeed an asymptotic approximation of the solution of this equation. Obviously,
analogous results can be drawn for the dipole distribution v;(z;,23); see equ. (9¢).

NUMERICAL RESULTS: Combining formulae (8), (9a) and (12) with the well known Kochin'’s
formula (Kochin, 1936), we obtain an approximation for the wave resistance of twin-hull bodies, whose
demi-hulls are thin and a-bit-slender in the sense specified by the asymptotic estimates (1) and (10).
The numerical performance of this approximation is illustrated in Fig. 1 for a symmetric (type-
B: symmetric Wigley demi-hulls) and two non-symmetric catamarans (type-A (-C): halved Wigley
demihulls with outwards (inwards) flat face) with common geometric characteristics (L = 1.0 m,
B =01 m,T = 0.2 m) and displacement (V = 8.889 It), and two different tunnel widths (w/L =
0.3 and 0.5). The depicted results suggest that, for higher Froude mumbers (Fr > 0.4) type-A hulls
give the lowest wave resistance coefficients, whereas for moderate Froude numbers (0.30 < Fr < 0.40)
type-C seems superior to the others. In all cases the symmetric hull form arrangement ’type-B) is
between the others and exhibits a good overall performance.

|

Further numerical results can be found in Kaklis and Papanikolaou (1992) and Spanos (1995).
The above results are qualitatively supported by existing experimental data for catamaran models with
non-symmetric demi-hulls. It seems, however, necessary to validate the present theory by systematic
model experiments with simplified standard hull forms (halved WIGLEY and strut-type hulls), before
implementing the procedure into a systematic hull-form optimization scheme.
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Fig 1. The influence of the demi-hull asymmetry an the wavé resistance coefficient c,, ofi thin cata-

marans ( r: asymmetry influence ratio, k: demi-hull interaction coefficient).




