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1. Introduction

Very large floating platforms such as a floating airport recently designed has 3 thin mat-

like configuration of very large horizontal size: a proposed design, for example
kilometers length and about 10 meters thickness. Naturally bending rigidity i

very small with this thin configuration and elastic deflection due to wave action w

crucial than the rigid body motions.

Numerical approaches used for analysis of wave-ship or wave-structures interact

applicable in principle but not appropriate for analyzing elastic responses of t

of such particular configuration and large dimension. Wave length is very sm

to the body length and the platform hardly moves as a rigid body. In most
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energy of waves penetrates deep underneath the platform from the edges and large deflection

will occur only at the edge parts. When waves happen to penetrate into the

beneath of

the platform, the elastic deflection caused by the penetrated waves will be of different wave

length from the incident waves. Therefore reflection and refraction will occur at the edge of

the platform. Different analytical approach based on correct understanding of thise physics
must be developed for accurate prediction of the hydroelastic behaviors of the pl | form.

In this report we present a linear analysis of the behaviors of a thin elastic plate floating in
waves. The approach is based on the idea that a thin plate is a part of water surface but
with different characteristics from usual free surface of the water. This approach was used
to analyze a similar problem of 2D by Meylan and Squire (1994). We extend this approach
to 3D case with the help of the wave diffraction theory of a slender ship which is ?amxhar to
ship hydrodynamicists.

2. The free surface condition

We consider long crested regular waves

o

incident on a flat floating platform of length L, breadth B and draft d located in the z — y
plane which coincides with the still water surface (see Figure). It is assumed that d << L, B
and the platform deflects to the passing waves following a linear elastic model.

exp[—ikz cos @ — iky sin 6 + iwt]

Assumption of kL >> 1 is rather natural considering several kilometers length of the plat-
form. Another assumption is kd << 1. Hereafter we consider deep water case where
k = w?/g. Extension to the case of the finite water depth is straightforward. 'i

Velocity potential ¢ has to satisfy Laplace equation in the fluid and a linear free surface
condition on z = 0 on the water surface outside of the platform. Underneath the platform we
impose other condition. This condition is imposed at z = 0 instead of at the actua;l‘platform
surface in virtue of the assumption of very small d. Thin elastic plate theory will give an
equation of the platform deflection w |

2 o2 8%\’ ]
maat2 E’I(a2 5&7—2—)w—pgw—p—Sé

@)

z=0




where m is mass of unit area of the platform, EI the equivalent flexural rigidity. The
third term on the right hand side is the effect of buoyancy and the fourth is the dynamic
pressure. Differentiating equation (1) with the time ¢, using the body boundary bondltxon
Ow/dt = 8¢/8z and factoring out the time component ¢, we obtain
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This might be interpreted as a type of free surface condition with different mass an | bending
rigidity. This is to be satisfied on 0 < z < L,0 < y < B. Stoker (1957) used thx idea for
analysis of a flexible beam on the waves. -

Our problem is a boundary value problem for the velocity potential ¢ with the iual free
surface condition at (2 = 0,0 <z < L-00<y<0,B<y<oo)and (z=0,-00<2z<
0 or L <z < o0), and another free surface condition (3) is imposed at (2 = 0,0 < z <
L,0<y< B) !_

3. The method of solution
A. Oblique seas( § = 0)

We assume the platform is long enough for L to be considered oco. The solution ¢ lmust be
periodical into the x direction and given is in the form of

B(z,y,2) = Ply, )= ke o+t @

It is well known that the governing equation of 9(y, z) is a 2D Helmholtz equation. Bbundary
conditions for 1 are:

A

kw--——O at z=0,0<y<B (5)
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f(y,y’) of equation (6) with letting the right hand side zero and satisfying the zero moment

Let us consider equation (6) as a differential equation for 89 /0z. Then a Green ?\:‘nction
= 0,B is

and shear force condition 8%/8y3(8vy/0z) = 8%/8y*(8¢/0z) = 0O at the edge y

readily found. Then the linear condition (6) is rewritten as
e ™
where f(y,’) is given by
4
F,y) =D Ai()e? ®)
=1 i
Naturally expressmn of A; is different for y > 3/ or y < ¥’ so that the derivatives of f have

singularity at y = y'. §; are the roots of
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an appro-

priate radiation condition has been well studied. The Green’s second identity and the wave

source function gives a linear Fredholm integral equation for ¥ at z = 0,0 <

Wave source function S(y, z;3/,2) of the Helmohotz equation satisfying (5) an§
some algebra.
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Numerical implementation of this integral equation is not so difficult as it look% since the
fi

double integral part can be handled analytically in virtue of the simple form of

¥(y,0) numerically determined underneath the platform will give 9, through equation (7)

and the deflection w of the platform is readily computed from 4,.
B.Head seas
Configuration of the airport will be very slender because B will be several hundre

Although the slender body theory is not perfectly legitimate for this configuratio
wave length is not necessarily of the order of B, we apply it to our problem as a p

s meters.
since the
eliminary

stage of investigation. Naturally we assume a slow variation of B(z) even at the bow and the

stern of the platform.

In the inner field close to the body we can factor out a rapidly varying part. The velocity

potential is written in the form.

¢(@,y,2) = Y(y, z2)e ™=

Theory of wave and slender ship interaction tells that the problem of the slow m
part 9 is almost the same as in (B. Oblique seas). Difference is radiation condit
determined by the analysis of the outer potential. The inner solution ¥(y, z; ) will 1
as

Y(y,z:z) = F(z)le™ +Yoly, 2 : 2)]

where 1 is a solution of an integral equation similar to (10)
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9(y,2 : ', 2') is again a wave source function not increasihg exponentially at |y| — oo (Ursell

(1968)).

\V34




Following the well-know procedure of the slender ship theory, unknown F(z) is daitermined
such that the outer approximation of (13) will match with the inner approximation of the
outer potential. The matching condition is:
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Deflection of the platform of realistic dimensions, which is predicted by numerical mhplemen—
tation of our approach, will be presented at the Workshop.
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DISCUSSION

* . . . . li
Maniar: You showed plots where zero transmission occurred. Is it possible to have cases where

both reflection and transmission are zero (theoretical)? (It would presumably correspond toa
case of "total internal reflection”).

Ohkusu and Nanba: Without appropriate damping provided from outside of the system
which absorbs the wave ebnergy, it is not possible to make both reflection and transmission

zero. Of course it is possible by selecting appropriate EI and other characteristics of the late
to make either of them zero.




