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Introduction
In this paper we propose a new method for solving the free-surface flow problems. The conser-
vation equations for mass, momentum and space [1] are discretized using finite volume method
with a colocated variable arrangement on block-structured or unstructured grids. The grid
fits the free surface and moves with it. The integration in time is performed using the implicit
Euler (first order) or three time levels (second order) schemes. Spatial discretization is based
on linear interpolation and central differences (second order). An iterative solution method is
used to solve the set of coupled non-linear equations. Linearized equations for Cartesian velo-
city components, pressure correction, and free surface location are solved in turn. Within each
time step this sequence, called outer iteration, is repeated until the non-linear equations and|all
boundary conditions are satisfied. Linear equation systems are solved using a pre-conditioned
conjugate gradient type of solver. The iterations performed within the linear equation sol er
are termed inner iterations.

The dynamic boundary condition at the free surface is taken into account when solving
momentum equations. At this stage the free surface shape and the pressure at it are prescribed
(values from the previous outer iteration). The free surface pressure is not corrected in
pressure-correction equation, which is derived from the mass conservation equation; however,
the velocities at the free surface are corrected. As a result, the discretized continuity equation
is satisfied both globally and in each control volume, but the kinematic boundary condition
is not satisfied: there are non-zero mass fluxes through the free surface. These mass fluxes
are then compensated by displacing the free surface, i.e. the flow through the free surface|is
prevented by moving the free surface. At the end of each time step the mass conservation|is
satisfied in all control volumes and the kinematic condition at the free surface is also satisfi
The method is suitable for solving both steady and unsteady flow problems with free surface.
Since it is implicit, large time steps can be used when solving steady flow problems. |

Mathematical Formulation and Boundary Conditions

The conservation equations in integral form for space, mass and momentum, for a spatial regn#n
of volume 2 bounded by a closed surface S, read:
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Here p is the fluid density, v is the velocity of the boundary of a control volume (CV), v
the fluid velocity, n is the outward unit normal vector at the surface, T' represents the stress
tensor and b stands for body forces. The stress tensor is defined as |

T=u(gradv+gradvT)—pI, (4)
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where p is the static pressure, p is the dynamic viscosity of fluid, and I is the unit tensor.
On the free surface both kinematic and dynamic conditions must be satisfied:

[(v—vs) 'n)g=0 or mgE=0, (5)
where my is the mass flux through the surface, and:

(n-T)-nh = —(n-T)-nlg;
(-T)-th = (n-T)-tg,

where t is a unit vector tangential to the free surface and indices 1 and g denote liquid and
gas, respectively. At inlet the velocity and free surface height are given. At outlet, wave
transmissive conditions are used. No slip condition on walls is used for viscous flow simulation
and the slip condition is applied in the case of inviscid flow simulation. In case of a turbulent
flow, additional scalar equations (e.g. for the turbulent kinetic energy and its dissipation rateD
need to be solved.

Discretization Procedure i

The solution domain at time t, is subdivided into a finite number of CVs by a block-structured
or unstructured grid. The flow regions with large variable changes can be locally refined.
The conservation equations are applied to each CV. The surface and volume integrals ar¢
approximated using the midpoint rule:
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where f is the value of f at the surface center S, and fc is the value at CV center. The cell
face values of variables and their gradients are determined by assuming linear shape functions
(which is, on regular grids, equivalent to linear interpolation and central difference approxim{-
ation, respectively). The discretized flux approximations are implemented using the deferred
correction approach, i.e. only the contribution from nearest neighbors and lower-order approx+
imations is treated implicitly, while the correction term lags one outer iteration.

For the pressure-velocity coupling the SIMPLE method is used [2]. The time integration 1$
performed using the implicit Euler method if the steady flow is to be solved. The implicit thr
time levels scheme is employed for unsteady flows requiring temporally accurate simulation.
The conservation equation for space can be discretized as follows:
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where the superscripts n+1 and n indicate the new and old time levels, respectively. The left+
hand term in Eq. (7) can be expressed through the sum of the volumes swept by the CV fa.ce$

during time At:
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The volume flux caused by the movement of the CV face can therefore be expressed as followst
N '

(VS Sc - th . (9)

The boundary velocity of the CV does not need to be explicitly calculated; instead, the volume
flux can be calculated from the known position of the CV vertices at both time levels.

The grid movement is governed by the movement of the free surface. According to the kinematic
boundary condition, the non-zero mass fluxes which remain after solving the momentum anch




pressure-correction equations within one outer iteration have to be compensated by displécing
the free surface. The displacement volume can be expressed as:

e , Bring At
Orngs PR =0 or 60 = PR (10)

Many possibilities exist for linking the coordinates of grid points at the free surface td the
displacement volumes JQ’; one is described by Lilek [3]. Here we use an iterative correction
approach, in which the displacement of the cell face S, in the direction of a unit vector e is

approximated as: s A
_ [omg t |
he = (pSn-e)c : 5(11)

When the outer iterations for one time step converge, the height correction h will become
negligible since dri goes to zero. Overturning waves can not be computed without restructuring
the grid and dynamically adjusting the direction of vector e. In the examples presented here

the grid points were moved only vertically. The solution algorithm can be summarized as
follows:

¢ Solve momentum equations using specified pressure at the current free surface;

¢ Solve pressure-correction equation using zero pressure-correction condition at the curxJ nt
free surface;

o Correct free surface shape to enforce kinematic boundary condition; '
o Iterate until no further adjustment is necessary; |

e Advance to the next time step.
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Fig. 1: Numerical grid used for the calculation of flow around hydrofoil

Application of the Method

The method has been applied to several free surface flows in which no wave breaking occu
Here the results of prediction of flow around a NACA-0012 profile under the free surface
at 5° angle of attack of and of sloshing in a large tank with and without obstacles will be
presented. Figure 1 shows the non-matching block-structured grid used to calculate the fi
around the hydrofoil. In Fig. 2 the free surface shape calculated on three grids is comp
with experimental data of Duncan [4]. Figure 3 shows the free surface shape and the velocity
field at one time instant during sloshing in a large tank with obstacles. These results and t e
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Fig. 2: Comparison of free surface shape above hydrofoil calculated on three grids with experimentdi.l
data of Duncan [4] :

capabilities of the solution method will be discussed in detail at the workshop. In particula?;
the grid will be locally refined near walls and around obstacle corners to resolve boundary and
shear layers more accurately, and the results will be compared with solution for inviscid flow!
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Fig. 3: Free surface shape and velocity vectors at one instant of time during sloshing in a large tan1¢
with obstacles '




Delhommeau: In your treatment of a viscous fluid, did you use a refinement of the grid\ ora

[
DISCUSSION
1 wall function?

Muzaferija et al.: The near-wall effects are modelled using wall-functions.




