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Introduction

The theoretical study on free-surface flow in a real fluid, which is governed by inertial, gravity, viscosity
and surface tension, has been usually made with the last two physical parameters ignored. The
effectiveness of this assumption depends on the length scale of the physical model for which the theory is
applied. In the range of the length scales where the most hydrodynamic and oceanographic applications are
made the simplified theory has been proven to be effective and practical. But there are some circumstances
where the viscosity and surface tension can be no longer ignored. For the water waves with wave length
comparable to 10cm, it has been known that the capillary waves with the short wave length ride on the
carrier waves with the propagating speed comparable to the carrier gravity waves. Recently, Longuet-
Higgins(1995) investigated this problem by considering the riding capillary waves as a perturbation due to
the local action of surface tension forces on an otherwise pure gravity wave. He included the effect of
viscosity in an empirical manner. He showed that for waves of wave length greater than 5cm there exists a
critical steepness of the gravity wave at which the riding capillary wave exhibits a maximum amplitude.
When the steepness of the gravity wave is lower than this critical value, capillary waves can be generated
at all points of the wave surface. Otherwise, they are trapped between two caustics near the crests.

In this study we treat the same problem using direct numerical simulation. The most popular method for
this kind of numerical simulation is the finite-difference method. But if one tries to apply this method to the
present problem, adopting an adequate grid system to described the correct velocity profiles is difficult
because there exist drastically different length scales raised by four distinct flow fields. Two of them are
flow fields generated by the carrier gravity waves and the riding capillary waves, and the others are the
flow fields due to the viscous boundary layer caused by the two wave components respectively. The depth-
wise velocity profiles of the flow fields can be approximately described by exponential functions. With a
given celerity C, the exponents for the wave components, k,, and k,, are determined by the dispersion

relation of the gravity-capillary wave which can be written in terms of the gravity constant g and surface

tension ¢ as follows
2
C= ’g_*',:_kwi_, i=1,2. (1)
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The exponents for the boundary layer of each wave components are given as
ky = |—2, i=12 @

where v is the kinematic viscosity of the water. For the water wave of wave length 6.5cm, which is actually
taken as a numerical example here, the four exponents have the relative values

=38.7, 22 =145.7, 3

which obviously show the diversity of length scales. Instead of applying a finite-difference method to the
whole domain, we adopt the method of fluid sheet theory which has been widely used for nonlinear water
wave theory (e.g., Shields & Webster, 1988).




Method of Solution

In the present method the continuity equation is satisfied exactly by describing the velocity field by a
stream function y(x,y,t). The stream function is expanded by depth-wise interpolation functions
{6,(B).i=1.2...} as

W(x,y.0) =3 u(x,0) 0,(B(x.y:t)) @
!

in a transformed coordinate system (x,B) defined as
B=B(x,y;t) = y—n(x,). (5)

where n(x,¢) is the free-surface elevation. The Navier-Stokes equations are weakly satisfied following the

procedure of finite-element method given in Carey and Oden(1986) with an exception that the interpolation
is made for the depth-wise direction only. The result can be written as
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where p(x,r) andt(x,z) are the pressure and the tangential shear stress on the free surface, respectively.
The coefficients 4%® and B®Y are defined as

mnk
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A% = [ D8,,(n) DP9, (n) an, (7.2)
0
B = [ D"8,(n) D8, (n)D'6,(n) an (7.b)
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where D is the differential operator. It should be noted that the above equation can be also derived b& the
fluid sheet theory. :




Numerical Results

Computations are made for waves generated by a pulsating pressure patch. The free surface conditions are
given as

p(x.t)=4% 2
0, otherwise

t(x,0)=0 (8.b)

(8.2)

where L is taken as the wave length and the circular frequency ¢y is taken such that the generated gravity
waves have the wave length of 6.5cm. For the depth-wise interpolation, nine functions are taken as

6;(B) =p" exp(k;B) ©)
with
i m; k,L/?.ﬂ:
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T3 Tid 8 [ 1 145.7
9 2 145.7

Here, the exponents of the interpolation functions are taken from Egs. (1) and (2). Finite difference method
is used to discretize Eq.(6) in x-direction with a uniform mesh of 200 nodes per wave length. The 4th-order

Runge-Kutta method is used for the time integration. Computatlons are made for the following magnitudes
of pressure patch,

—maX -0,15,0.16,...,0.20. (10)
pgl

and wave elevation and its slope is measured at four locations, x = L, 2L, 3L, 4L. It has been found that the
numerical results show a good agreement with the experimental result of Cox(1958). In Fig.1 time history

of wave slopes computed with ""L" =0.15 and 0.20 are compared. It can be found that the generation of
pg.

capillary waves are more significant when the amplitude of the carrier gravity wave is higher. Fig.2 shows

the profile of wave slope at ¢ = 87 where T denotes the period of the gravity wave. The capillary wave shows

significant decay along the x-direction, presumably due to viscous dissipation.
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DISCUSSION

Takagi: I think that the choice of the depthwise interpolation function may affect the results.
How did you decide the depthwise interpolation function?

Kim & Webster: There are several choices of depthwise interpolation functions (or basis
functions). These functions include polynomials, sinusoidal functions, and exponential func-
tions. These functions are such that a finite set of them is closed under differentiation. The
selection of which type of function to use is made by considering the likely variation in ve-
locity with depth. That is, the "shape” of the velocity profiles expected should be able to be
described by some combination of the basis functions. There is no maximum number of basis
functions which can be used. Each selection results in a separate theory. The presumption is
that the more basis functions which are selected, the more accurate the results, since the real
kinematics can be more closely monitored. In fact, it can be shown that this is the case.




