3-d Rankine panel computations for a ship in head waves
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This paper presents an extension of the work presented on the last workshop, Hughes (1995).
Unspecified notation follows general custom, resp. ITTC standard. I consider a ship moving
with mean speed U in harmonic head waves of small amplitude. For 7 = Uw/g > 0.25,
diffracted and radiated waves cannot propagate upstream. For 7 < 0.25, the method might
require an extension which could either use absorbing boundary conditions (”beach”) or match
the near-field Rankine solution to a far-field Green function solution. However, MIT experience

with similar Rankine singularity methods suggests that the errors in not fulfilling the radiation
condition for the upstream waves is not so important for 7 < 0.2.

The linear ship motion problem is still the seakeeping problem of principal practical interest as
it is the keystone for added resistance predictions. The most common tools in practice to solve
the ship motion problem are based on strip theory, because this approach is cheap, fast, and for
most cases also quite accurate. However, strip methods do not perform so well for high speeds,
full hull-forms (tankers), ships with strong flare, and generally for low encounter frequencies

which typically occur in following seas. Approaches to improve prediction of added resistance
should capture

— 3-D effects of the flow

3-D effects are important for low encounter frequencies and full hull forms. 3-D diffraction
at the bow region of tankers contributes considerably to added resistance.

— Forward-speed effects

Strip methods include forward speed by the change in encounter frequency. But forward
speed enters the ship motion problem in additional ways: the local steady flow field, the

steady wave pattern of the ship, and the change of the hull form and wetted surface due
to squat (dynamic sinkage and trim).

I will present a Rankine source method to capture both 3-D and all forward-speed effects for
linearized seakeeping problems as proposed by Bertram (1990a) and McCreight (1991). How-
ever, McCreight never realized his proposal and Bertram ’faked’ a solution by using a crude
approximation for the second-order derivatives on the hull.

The problem is linearized around the fully nonlinear solution of the steady flow (derivatives of
velocity potential (9 wave elevation ¢(©, wetted surface S including trim and sinkage and wave
profile on hull). In a first step, the steady flow is solved iteratively using higher-order panels
(parabolic in geometry, linear in source strength), Hughes (1995), Hughes and Bertram (1995).
The relevant boundary conditions are given here without further comment:

The particle acceleration in the stationary flow is: @0 = (V¢ @DWV)ve©®

For convenience we introduce abbreviations: @9 =a® - {0,0,9}7
= l_g z(VqS(O)a-")
In the whole fluid domain: ¢(°) =
On the steady free surface: V¢(°)a9 =0
| 2 (V¢>(°’)2 - g¢® =
On the hull: V6O =

7 is the unit normal on the hull. Radiation and open-boundary condition are enforced by shifting
sources vs. collocation points.

In a second step, the diffraction/radiation problem is solved using almost the same techniques
as for the steady flow computation except that now flat panels with constant source strength
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distributions are used as second derivatives on the hull are no longer required. For head waves,
the problem is symmetric and sway, yaw, and roll motions are zero.

The instationary potential ¢(1) is divided into the potential of the incident wave ¢", the diffrac-
tion potential ¢¢, and the 3 symmetric radiation potentials:

60 = ¢+ 6 + ¢l + ¢%is + Fis ()

The symbol ~ denotes a complex amplitude. ; are the motion amplitudes in the 3 symmétric
degrees of freedom. The boundary conditions were derived by Newman (1978) and Bertram
(1990a).

On the free surface at z = (9, the boundary condition is:
(—w? + Biwe)W + ((2iwe + B)V® + &@ + 39V + VO (vsOWv)Ve) =0  (2)

Setting the steady flow to uniform flow simplifies (2) to the usual Kelvin condition at z = 0.
However, this crude linearization loses many physical properties.

The boundary condition on the average position of the hull is:
AV + @m + (7 x Vo' + 7 x M) — twe (@7 + G(F x 7)) =0 (3)

with m = (AV)Ve®), @ = {u1,u3,u3}, & = {1, a2, a3} = {ug,us,us}. The ’average position’
of the hull is the solution of the steady flow problem and includes trim and sinkage. This is
deemed to be important for ships with strong flare and considerable squat, e.g. yachts or slender
container ships.

Diffraction and radiation problems for unit amplitude motions can be solved independently using
Rankine sources (panels). Each source fulfills automatically Laplace’s equation and the decay
condition that the disturbance of the flow vanishes at infinity. For the diffraction problem, all
u; are set to zero. For a radiation problem, the relevant motion amplitude is set to 1. All
other motion amplitudes, ¢¥, and ¢? are set to zero. Then the boundary conditions at the free
surface (2) and the hull (3) are fulfilled in a collocation scheme. Radiation and open-boundary
condition are enforced by shifting the Rankine sources vs. collocation points as proposed by
Bertram (1990b). The collocation scheme forms 4 systems of linear equations in the unknorm
complex source strengths sharing the same matrix of coefficients. Only the right-hand si
differ. The 4 systems are solved simultaneously using a complex-variable version of Sodmg s
(1994) semi-iterative solver.

The first-order forces F and moments M acting on the body result from the body’s weight and
from integrating the pressure over the average wetted surface S, Bertram (1990a). The re]ati%)n
between forces, moments and motion acceleration is: ;

Fl(l) = —muw?(i; + Gazg) -
F3(1) = —muwi(iz — éaz,) (4)
MY = —mu?(zgin — z403 + k2G2)

ky is the radius of the moment of inertia ©y = [(2? + 2%) dm, m the mass, zy and z, the center
of gravity. Inserting the pressure integrals (for unit motion) for the forces and the moment forms
a system of linear equations for uj, uz, az, quickly solved by Gauss elimination.

Preliminary computations have been performed for a Series-60 (Cp = 0.7) in head waves, whiéph
was discretized using 827 panels on the hull. For a ship of 121.92m length, the mass was set to
9924t, ©, = 9.6 - 10°%tm?, 2, = 0.6m before amidships, z; = 0.9m below CWL.




Exciting forces in head waves for F,, = 0.2 agree well with experiments of Gerritsma and Beukel-
man (1960,1967). The phase for pitch exciting force is given as about +90° in Gerritsma and
Beukelman (1960) for all Froude numbers, but as about —90° in Gerritsma and Beukelman
(1967) for the two Froude numbers considered there. I therefore determined the phase by taking
the value from Gerritsma and Beukelman (1960) and subtracting 180°. Results for motions,
Fig.2, indicate some errors which could possibly be due to (in order of likeliness):

1. programming errors

2. input errors (steady solution or additional data)
3. discretisation errors

4. theoretical errors in the formula work

The method offers the most extensive physical model for frequency-domain computations in-

tended for added resistance computations. Subsequently good results are expected for the
ultimate prediction of added resistance. However, at present

— the method is limited to = > 0.25,
— added resistance has not been included yet even in the formula work,

— and testing and debugging of the seakeeping code is not yet finished.
The expectations for better results have yet to be proven.
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Fig.2: Response amplitude operators for F, = 0.2, o computation, e experiment
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Fig.1: Exciting forces for F, = 0.2, o computation, ® experiment
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DISCUSSION

Korsmeyer: What is the convergence criterion for the steady problem?

Hughes: At the end of each iteration step the nondimensional error in the boundary condition
(defined as € = max(|1V((V¢)?)V¢ + g4.|/gU) and the nondimensional error in the dynamic
boundary condition (defined as eq4y, = max(|1((V$)? — U?) + ¢(|/U?) are computed, where
"max” refers to the maximum value at all of the collocation points on the free surface. This

information is used to determine if the solution has converged or more iteration steps are
needed.




