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1 Introduction

We consider the mean yaw-moment acting on floating bodies advancing in incoming monochro-
matic waves. The fluid is assumed incompressible and inviscid, and the flow irrotational. The
amplitude of the waves (A) and the speed of the body (U) are both assumed small. The mean
yaw-moment is obtained taking into account terms up to O(A2%,U). In Grue and Palm (1993),
hereafter referred to as GP, formulae were derived for evaluating this moment. One part of the
moment stems from second order coupling between the linear motion and itself, Another part
is due to interaction between time-averaged second-order velocities in the fluid and the steady
flow due to the moving body. The moment was obtained by two methods, viz.

a) the near field method (pressure integration),
b) the far field method (conservation of angular momentum).

It is convenient to denote the moments obtained by the near and far field methods by Mpear
and Mjer, respectively. These moments are composed by

M;zear - M;zear(l) +M;zear(2), Mifar = Méfar(l) + szar(2), (1)

where M7**" () prfor() gror from second order couplings between the linear part of the flow and
itself, and M7ee™® prfor@ o from coupling between time-averaged second-order velocities
and the steady flow due to the moving body. It turns out that the two different procedures lead
to different analytical expressions and numerical values for MW ang mf o) Mreer@ and
M@ More precisely: While M**" = Mfo", we have in general that M"**"() # Mm@

and M;zear(2) # Méfar(Z).
Questions concerning these results have been raised: Are they inconsistent or wrong? And, in
practical computations: Can the contribution due to the second-order velocities be avoided?

These questions have provoked this study. We find that the answers to these questions are: No.
In the present note we will by some examples try to make the issue clearer.

We note that a corresponding result also applies to the drift force.

2 The potentials

A coordinate system Ozyz is introduced in the frame of reference following the forward speed
of the body, with the x and y axes in the mean free surface and the z axis vertical upwards.
Unit vectors (i, j,k) are introduced accordingly. The forward speed direction is along the z
axis. According to the assumptions above, the fluid motion is governed by a Laplacian velocity
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potential ®. This may be decomposed by ® = Ux, + ¢(!) + 43, where Ux, = U(—z + x)
denotes the velocity potential for the steady flow around the body, ¢(!) the linear wave potential
proportional to A, and ¥(?) a steady second order potential proportional to 42. The potential
® may also have other components, but these do not contribute to the present analysis.

Assuming time-harmonic oscillations with frequency of encounter o, the linear potential ¢(!) can
be written

¢V (x,t) = Re{p(x)e*"*} = Re{A(¢; + dB)e't}. (2)
The incoming wave potential reads ¢; = (ig/w)(cosh K(z + h)/cosh K h)e~iK(zcosB+ysinf)
where g denotes the acceleration of gravity, w the wave frequency, K the wave number (w? =
gK tanh Kh), h the fluid depth, and B the angle of incidence. o is related to w and K by

0 = w — UK cos 3. The potential ¢p represents the sum of the scattering and radiation poten-
tials. Here we consider only the far field form of this potential which is given by

ig cosh k1 (6)(z + h)
w  coshki(0)h

é5 = R™V?H(6) e~k OR1+0(™) L O(1/R) asR— o0, (3)

where H(8) denotes amplitude distribution, z = Rcos 8, y = Rsiné, k;(8) = ko(1 + 27" cos §),
ko(B) = K(1-27" cos B), 7" = 7/Cy(Kh), 7 = Uo/g, and Cy(Kh) = tanh Kh + Kh/ cosh? Kh.

The Laplacian potential 1/(2) has the boundary conditions
04?92 = ~(0/29)Im(¢4,) onz=0 @

where a star denotes complex conjungate,

Y@ /on = —n - [(EV + a® x x) - V]VeD) +(alD) x n) - [(d/dt)(¢D + aD x x) — V¢M)] on Sp, (5)

where £(1) = Re{(¢1,2,£3)e"?} and o) = Re{(£4, &5, £6)€™t} denote the first order translations
and rotations of the body, respectively, and a bar time-average. Sp denotes the wetted part
of the body in the mean position. In addition, 8% 8z = 0 at z = —h, V¢y@ — 0 for
(22 + y*)V/? - .

3 The yaw-moment

3.1 The near field method

The mean yaw-moment is first obtained by pressure integration over the wetted body surface
(MPeem), The moment has two components as defined in (1). M;' car(1) is found by integrating
the parts of the fluid pressure determined by ¢(!) and x, over the wetted body surface. (The

expression is not given here.) Mr**"® is determined by

Mpear® = _pU fs VX V9 nedS = U i o, (Ereg g Sds @
where ng = k - (x x n), n the normal vector positive out of the fluid, x = (z,y, z), Sr denotes
integration over the mean free surface and ¥ is determined by ¥ = y + ¥,. The latter is a
Laplacian velocity potential satisfying 8%,/8z =0o0n z = 0,~h, 3¥,/0n = 0 on Sp, ¥, — -y
for (22 + y2)/2 = oo. We note that ¥, is the steady potential due to a current with unit
speed along the negative y axis, corresponding to X,, the potential due to the current along the
negative z axis.




3.2 The far field method

Next we consider the mean yaw-moment obtained by the far field method. The formula for

1"1) reads (see GP, Grue and Biberg 1993)
Y T oH"
W = —252— b (Cg(klh) - 27 cos0)Im [H 50 ] dé (7)
9 __ K dCy(Kh) . ,
5.2 { (1 CiEKR) dK 7sin BIm[S] + (Cy(Kh) — 27 cos B)Im[S'] ¢ , (8)

where § = \/2n/koe"™/4[H(B + 2r"sin B)]*, S’ = /2n[koe’™/4[H'(8 + 27" sin B)]*, a prime
denotes differentiation with respect to the argument, and p the density of the fluid.

The formula for sz a2 derived by GP reads

' oy L)
M) = U '} dS = —pU v - ds. 9
U o s Y om p SF+SB( %5 9)

The integral over the body surface in (9) involves evaluation of a spacial second derivative of
¢(), and precise evaluation may not be trivial when applying a low-order panel method. By
applying a variety of Stokes’ theorem we may, however, obtain integrals which require evaluation
of spacial first derivatives of ¢(!) only, being suitable for efficient and accurate computations.
In addition to integrating over Sp we must also integrate along the water line of the body, Cp.
The final result for M7*"® reads

M{ar(2)
pgA?

T [ « T ..
= / /S WuIm(pp},)dS + 3 /C ¥, Im{(Bs + ¢)B" - nldl

+oe / /S Im{(B-n)(V¢' + KB")- V¥, - K¥,C-B'lS, (10)
where ¢ = (w/ig)$, B = [(¢1,€2,&3) + (€4, €5, €6) X X]/A, C = [(&4,&s5,€6) x n]/A.

4 Discussion

In the near field method the formulae for the moment are obtained by integrating the presssure
over the instantaneous wetted body surface. When the far field method is used, the moment
is found from conservation of angular momentum. This is equivalent to integrating the vector
product of the space coordinate and the equation of motion of the fluid. The moment is in both
procedures obtained consistently to second order in the wave amplitude and to first order in U.

It turns out that the contributions to the moment from the steady second order potential are
different. Thus, the mathematical forms of M***"® and M{*® are different, see eqs. (6)
and (9). The mathematical deductions thus show that in general M) 2 pfe™(V) and that
M;‘”"@) # sz ar(2) (but MPreor = Mfer),

We have performed computations of the components of the moment using the near and far
field methods. Several geometries are considered: Offshore platforms, ships, and also idealized
bodies. In general we find that the contribution due to the second-order velocities is not small
and cannot be neglected in the computations. It turns out that this effect is most pronounced
when the wave direction is orthogonal to the steady motion of the body.
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Figure 1: Wave drift damping moment vs. Ka due to slow surge motion of a freely floating
half-immersed sphere with radius a. Wave angle: @ = 90°. Squares: szl‘" (total moment), x

x x: MIF® 44 L MI®. a) Water depth: h = co. b) Water depth: h/a = 1.2.

To illustrate this we consider the moment on a sphere with respect to the center-axis. This
moment is zero, which must be predicted by both methods. Noting that ng = 0 for the sphere
we find that MPeor = MP"W) = p2e9™®) < 0, In the far field method we find that Mfer®
and M7 are not zero in general. These individual terms are largest when the direction
of the waves and the forward speed are orthogonal. In figure 1 are displayed results obtained
by numerical methods to illustrate the contributions due to these terms. For convenience we

introduce U

TEME M =Ml s, C)
where a denotes the radius of the sphere. The figure shows that both M@ and MIE are
large, that M/*" () ~ — M/ and that M = MIE® 4 M@+ 0. In these examples the
contribution to M fla ") s due to the stationary phase term (8). The right of (7) is always very
small in these computations.

M = MET +
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