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1. INTRODUCTION

Fully non-linear theory is commonly used for the simulation of steep wave
interaction with large volume offshore structures. This problem is particularly relevant
to the oil industry where concern has arisen due to the ringing response of some
offshore structures. The present authors have described a fully non-linear finite element
method for tackling this problem in two-dimensions at the last Workshop (1,2).

This paper presents details of an octree-based finite element mesh generator
whereby tetrahedral meshes are produced (i) by generating an octree grid about planes
of seeding points which describe the free surface and body geometry, and then (i) by
dividing the octree grid into a mesh of tetrahedral finite elements.

In addition, the paper describes a three-dimensional finite element numerical
model for inviscid free surface flows. A time marching method is used which assumes
that the wave profile and position of the structure are known at a particular instant, and
the problem is solved numerically at successive time steps using potential theory. The
potential at the free surface provides the boundary condition for the next time step
calculation, and the new free surface profile is calculated from velocities at the surface.

Preliminary results are presented for standing waves in a rectangular tank calculated
using regular meshes.

2. OCTREE-BASED MESH GENERATION

2.1 Octree Grid

Octree grids are the three-dimensional extension of quadtree grids (1,2). The
basic element is the octree cube, within which the grid is generated by recursive
subdivision about planes of seeding points. Each division splits the divided cell into
eight equal sized smaller cubes. The resulting grids are refined at the boundaries. The
ratio of adjacent cell edges is restricted to be at most 2:1 by further subdivisions in
order to limit the possible arrangements of neighbouring cubes. Each cell thus has a
maximum of four possible face neighbours on each face, as shown in Figure 1 for the
top face of cell A; two possible neighbours on each edge, as shown for the North East
edge of cell A in Figure 2; and one corner neighbour on each vertex. In total, there
exist 56 possible neighbours for each octree grid cell

Octree grids have a hierarchical tree structure which enables efficient data
storage and fast neighbour finding using tree traversal techniques. The numbering
system adopted herein is based on that proposed by Samet (4). The reference number




for each panel contains information about its location within the octree stored as a set
of x, y and z translations, and combined into a single integer.

The reference numbering system can be summarised as

m~1
N = N;9' (1)
i=0
where m is the division level of the cell and N, takes the integer value 1, 2, 3, 4, 5, 6, 7
or 8 depending on the position in which the cell is located within its parent cell. In this
scheme 1 refers to front North West, 2 to front South West, 3 to front North East and
4 to front South East, and S refers to back North West, 6 to back South West, 7 to
back North East and 8 to back South East. The numbering of octree children is
summarised in Figure 3. The reference number of a given cell can be used to obtain
directly the reference number of its parent cell, its centre co-ordinates, and by
manipulation the reference numbers of each neighbouring cell can be derived.

In Figure 4 planes of boundary seeding points are shown describing a
rectangular tank containing water of sinusoidal free surface elevation of amplitude
0.084, where d is the water depth. Figure 5 shows the octree grid generated from the
seeding points which has a maximum division level equal to 5.

2.2 Finite Element Mesh

Tetrahedral finite elements are obtained from the octree grid by joining the
centres of four neighbouring cubic cells. This eliminates hanging midside nodes which
occur in octree grids. Six tetrahedra are generated from a basic unit of eight cells of the
same size, as shown in Figure 6. Tetrahedra are obtained by this standard configuration
where possible throughout the grid, and additional neighbour combinations are also
used where necessary at boundaries and within the grid at transitions between cells of
different sizes. Finite element nodes are initially located at the centres of octree cells.
Figure 7 shows the tetrahedra obtained from the octree grid in Figure 5. The presence
of any holes in the mesh is prevented by checking that each internal face has exactly
two elements connected to it.

Boundary nodes are then moved by interpolation using the co-ordinates of .
boundary seeding points, in order to produce a close approximation to the free surface,
as shown in Figure 8.

3. SOME PRELIMINARY RESULTS

The finite element formulation and solution method have been developed in
previous papers (2,3). In this work, preliminary results have been obtained using a
regular mesh generator. The calculation domain is divided into cubes by planes parallel
to the bottom and walls of the tank, and six tetrahedral elements are generated within
each cube. The meshes are adapted to follow the free surface by adjusting nodes in the
vertical direction only.

Two-dimensional standing waves have been simulated in a three-dimensional
rectangular tank of depth d, width b=0.3d and length I=2d. The initial free surface
elevation is given by:




n(x,y,r=0)= acosg'lﬁx (2)

where a is the amplitude. Figure 9 shows the wave elevation history, 1/a, measured at
the centre of the tank for amplitudes a=0.014d and a=0.05d respectively, plotted with
the linear analytical solution. In both cases the numerical results agree well with the
analytical solution, however the discrepancy is more visible in the latter case as the non-
linear effect becomes more significant.

In the next stage of this work the locally refined octree-based finite element
mesh generator outlined in Section 2 will be combined with the solution algorithm
discussed in Section 3 in order to tackle more complex geometries. This combined

approach will be applied to realistic problems related to the offshore industry, and
results presented at the Workshop.
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Figure 1 Face neighbours Figure 2 Edge neighbours
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igure 9 Wave elevation history at centre of tank

(solid line: analytical; *: a/d=0.01; +: a/d=0.05)




DISCUSSION

Armenio: It is well established that FEM are well suited for solution of viscous flows on fully

unstructured grids. At present you solve potential problems. Could your work be considered
as preliminary to viscous free-surface unstructured computations?

Greaves et al.: Yes. The method will be used to solve potential flow problems on the

unstructured octree-based finite element meshes and in the future will be extended to solve
viscous flow problems.

Schultz: How suitable is this approach for the addition or subtraction of nodes for adaptivity?

Greaves et al.: The method is well suited to adaptive remeshing as cells can be added to and

subtracted from the octree grid without disrupting the tree structure, once a suitable adaption
indicator has been selected.




